

Rheo F4
Unique solution to analyze in one single test the dough proofing properties

IAOM MEA, Sousse Stéphane COCHET, October 2013

Baking is a complex process

Baking – 3 essential stages

1- Mixing / kneading

Initiating bread structure

2- Fermentation / proofing

Developing bread structure

3- Baking

Setting bread structure

Proofing is a key functional step

CO₂ production + CO₂ retention

Dough rising

Proofing is a key functional step

Overall dough proofing performance depends on :

- flour quality
- yeast performance
- added ingredients

Gas production depends on :

- Yeast
- Damaged starch
- Sugars, enzymes, etc

Gas retention mainly depends on :

Quality of gluten network

Rheo F4 - Presentation of the device

Results from Rheo F4 - Dough development

T1: time to maximum dough development in hours and minutes.

Hm: maximum dough development height under stress, in mm.

T2 and **T'2**: relative stabilization time at the maximum point located at a height of 0.88Hm without being lower than Hm-6mm.

ΔT2=T2-T'2= dough tolerance during proofing

h: dough development height at the end of the test

(Hm-h)/Hm: % of drop in development after 3h (case of the CHOPIN protocol) compared with T1

Rheo F4 – Example of results

Results from Rheo F4 – Gas release/porosity

H'm: maximum height of the gas release curve.

T1: time required to obtain H'm

Tx: dough porosity time (time when the dough starts to lose CO₂).

Total volume: total volume of gas released in ml (A1+A2 of the curve).

Volume of CO₂ lost: carbon dioxide volume in ml that the dough has lost during proofing (A2).

Retention volume: carbon dioxide volume in ml still retained in the dough at the end of the test (A1).

Rheo F4 – Example of results

Rheo F4 - The market

Millers Bakers

Additives manufacturers
Enzymes manufacturers
Yeast producers
Research Institutes / Universities

Applications – Different flours

Flours with different protein contents have different behaviors during proofing.

Rheo F4 identifies the optimal properties for every products.

Applications - Vital Wheat Gluten

The more VWG added, the stronger dough development.

With Rheo F4, adjust precisely the quantity of VWG needed for optimal dough development.

Applications – Alpha amylase

Alpha amylase increase fermentative capacities of dough: higher dough development and gas production.

With Rheo F4, identify precisely effects of Alpha amylase on dough behavior.

Pre-frozen dough shows lower gas production than fresh dough. Additives may be used to correct this.

With Rheo F4, evaluate and optimize fermentative performance of pre-frozen dough.

Conclusion

Unique and complete information in one test

- Dough development
- Total gas production
- Dough porosity / Gas retention
- Dough tolerance during proofing
- Easy to use
 - Total software control PC (USB)
 - Fully automated test
- Economic
 - Simple design, low maintenance, only one consumable
- Rheo F4: The Best Solution to control proofing and ensure correct volume of final products

New SRC Chopin automatic (Available in 2014)

Thank you for your attention CH

