Experimental milling to evaluate tempering aids for commercial applications

Dr. Chris Miller Sr. Director of Research Innovation and Quality Engrain LLC

IAOM-MEA 2015

What to look for in a tempering additive

- Relatively cheap compared to wheat cost
- Easy to apply in liquid form
- Produce a measureable increase in milling efficiency

How do we define milling efficiency?

- Increased flour extraction
- Decrease flour ash
- Increase extraction at equal flour ash
- Energy reduction
- Increase baking quality
- Constant quality with lower cost wheat

Why Tempering Treatment

- The flour milling industry is more efficient today than ever before.
- Modern tempering systems have improved flour quality and consistency.
- Bran dusters ensure clean extraction.
- Proper air handling ensures minimal moisture loss.
- We are reaching the theoretical limit of extraction from the wheat kernel.

Why Tempering Treatment

• We remain to leave 20-30% residual starch attached to bran after milling.

DRAWN BY: DATE:

Flour Production by Stream

Flour Production (kg/hr)

Flour Stream

65% of total flour production within one grinding step from 1BK

Treatment Case Study

- Hal Ross Flour Mill Kansas State University
- 1MT per hour
- Hard Red Winter Wheat
- Target Moisture 16.5%
- Temper Time 16hrs
- Additive- Engrain extraX
- Dose rate 150ppm

Liquid Dosing with MYFC

Hal Ross Flour Mill Roll Floor

Flour Collection

Break Analysis

Purifier Evaluation

Semolina to 1M/2M

	Control	Treatment
Flow Rate (kg/hr)	362.89 kg/hr	373.6 kg/hr
Moisture	15.06%	14.7%
Ash 14% MB	0.375%	0.373%

Flour Quality Results

Control

Treatment

	Control	Treatment
Straight Grade Flour Extraction	75.8%	75.9%
Moisture	14.16%	13.55%
Ash (14%MB)	0.537%	0.517%
Falling Number	539 sec	547 sec
Loaf Volume	2062cc	2200cc

Alveogram

Control- P/L 3.2

Treatment- P/L 1.97

Conclusion

- Tempering treatments can be evaluated using laboratory and pilot scale experimental milling.
- Liquid additives can be applied using cost effective and accurate dosing systems.
- Tempering additives can provide measureable improvement in milling efficiency.