

Crucial factors in quality control Brabender® GmbH & Co. KG

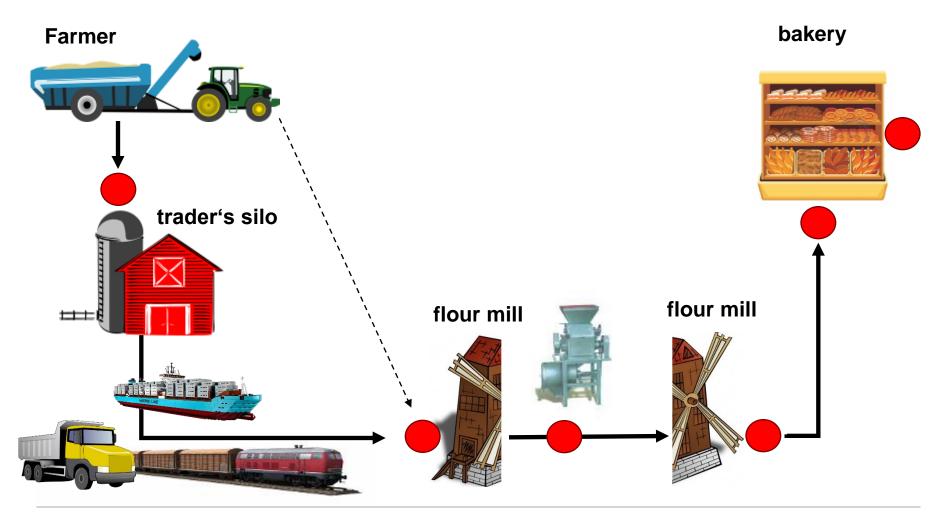
IAOM MEA Middle East Technical Forum Cairo 18. – 19. May 2016

Crucial factors in quality control Agenda

Introduction

Quality control along the grain chain Standard quality testing methods, Scientific societies in the milling and baking sector

- Quality control in grain trade and storage, flour mill and bakery Measuring criteria
 Applicable methods and comparison of those
- Trends in quality control
- Conclusion



Crucial factors quality control Introduction

Introduction

In which steps of the grain value chain is quality control involved?

Introduction General benefits of quality control for grain traders, millers and bakers

- ✓ Simplification of communication between buyers and sellers by specifying a certain grain and flour quality
- ✓ Check the supplied grain / flour in accordance with given specifications at the receiving station
- ✓ Determination how flour performance and best suitable application
- ✓ Providing a stable production and product quality
- ✓ Avoidance of production waste and loss
- ✓ Reduction of production costs: Cost optimization

Brabender*

Introduction Standard quality testing methods in the milling and baking sector

Definition of standard methods

The determination and application of standard methods serve as a basis for comparing the obtained measuring results, within the scope of their worldwide or regional validity and their approval by public authorities, institution and the market.

Important: Standard methods do not give any information about whether a quality of a flour can be considered as good or bad! This depends on the exact application.

Introduction Standard quality testing methods in the milling and baking sector

Standard methods

- Procedure for the sample preparation
- Method and handling for realization
- Field of application
- Laboratory instruments to be used
- Evaluation and displaying of the results
- Reproducibility of the results

Introduction Scientific societies in the milling and baking sector

AACC (American Association of Cereal Chemists)

ICC (International Association for Cereal Science and Technology)

ISO (International Organization for Standardization)

Quality control in grain trade and storage

Quality control in grain trade and storage What can grain traders achieve and avoid with quality control?

Importance of quality control for grain traders

- Define specifications and simplify communication with suppliers
- Right selection of grains according to the customers' specifications
- Minimize wrong deliveries from suppliers or to customers
- Avoid complaints and returns from customers
- Avoid inadequate storage conditions

Quality control in grain trade and storage Measuring criteria: Moisture content

Why is this important for grain trade and storage?

- Moisture is an indicator of grain storability
- High moisture content (over 14.5%) attracts mold, bacteria, and insects
 Consequence: grain quality is negatively effected during storage
- Wheat or flour with low moisture content is more stable during storage

Examples for applicable methods:

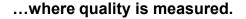
- Drying oven method
- Near infrared spectroscopy (NIR)
- Drying balance

Quality control in grain trade and storage Measuring criteria: Moisture content

Method	+	-	Instrument
Drying oven method	Reference method, No calibrations	Time	
NIR method	Easy handling, Quick execution	Calibration required, No reference method	
Drying balance method	No calibrations, Low cost	Small sample size	

Quality control in grain trade and storage Measuring criteria: Moisture content

Automised drying oven method


- "Start the tests, the MT-CA does the rest!"
- 10 independent samples at a time
- Automatic drying and evaluation process
- World wide accepted reference method

No. of tests	MT-CA	Drying balance
1	60 min	10 min
2	62 min	22 min
5	~ 70 min	~ 60 min
10	~ 80 min	~ 120 min
20	~ 160 min	~ 240 min

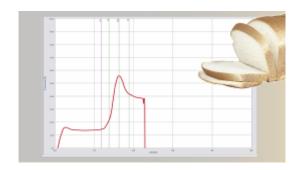
Quality control in grain trade and storage Measuring criteria: Rheological properties

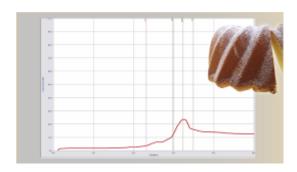
Why is this important?

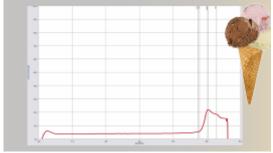
- More than absolute data (protein content)
- Quick grain classification
- Clear information on grain quality

Examples of applicable methods:

- Gluten Peak Test
- Gluten Washer with Gluten Index



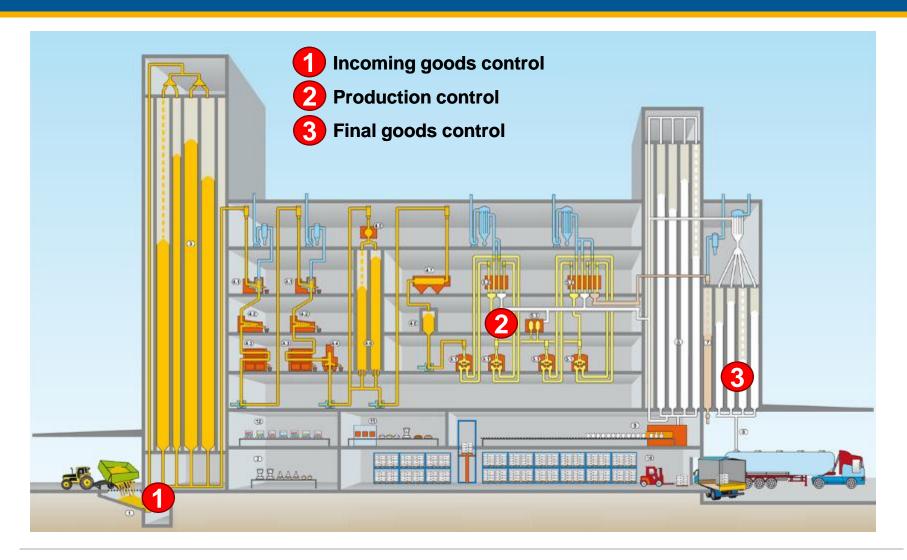

Quality control in grain trade and storage Measuring criteria: Rheological properties


Gluten Peak Test

- High energy input in a suspension of water and a ground cereal product
- Gluten aggregation according to its property
 - Strong gluten: short peak time with a high peak
 - Weak gluten: long peak time with a low peak

Quality control in grain trade and storage Measuring criteria: Rheological properties

	+	_
Gluten Peak Test	Rapid and easy Small sample size Analysis of the complete flour sample High informative value of the whole curve	New method, thus little data
Gluten Washing Method	Well-known method Small sample size Easy with flour	Time consuming Difficult with whole grain flour



Quality control in the flour mill

Quality control in the flour mill Where is quality control involved?

Quality control in the flour mill Where is quality control involved?

Incoming goods control

- Quick quality evaluation, e. g. for silo filling
- Price determination and negotiation

Production control

 Analysis of flour quality and properties to carry out corrections if necessary

Final goods control

- Assurance and documentation of the flour quality
- Final quality test

Quality control in the flour mill What can millers achieve and avoid with quality control?

Importance of quality control for millers

- Define specifications and avoid wrong deliveries, avoid delays in production
- Test incoming goods for defined specifications
- Avoid inadequate storage conditions
- Prove specifications from customers, avoid complaints and returns
- Control the production process and minimize production waste

Quality control in the flour mill Which measuring criteria are crucial?

Analysis of incoming grains and outgoing flours

- Moisture content
- Flour water absorption
- Dough resistance / extensibility
- Flour starch viscosity
- Gluten quality

Quality control in the flour mill Measuring criteria: Flour water absorption

Why is this important for millers?

- Estimation of the optimum water amount for a flour to form a dough
 - weak gluten flour: low water absorption and short stability time
 - strong gluten flour: high water absorption and long stability time
- Prediction how a flour will react in different stages of production and baking
- Definition of flour specifications for a given purpose
- Assurance of stable product quality

Quality control in the flour mill Measuring criteria: Flour water absorption

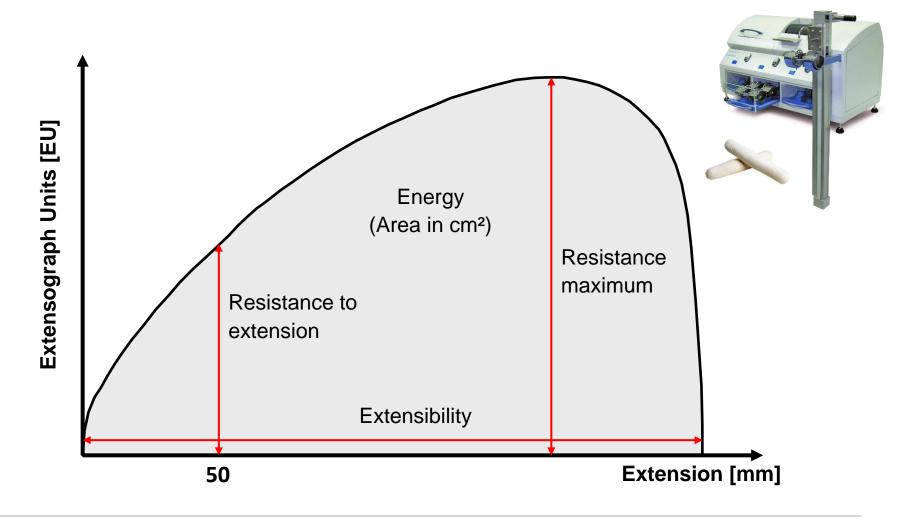
Quality control in the flour mill Measuring criteria: Dough resistance / extensibility

Why is this important for millers?

- Verification of suitability of the flour for a certain task
- Determination of gluten strength and bread-making characteristics of flour

Examples of applicable methods:

- Extensograph[®]
- Alveograph[®]


Quality control in the flour mill Measuring criteria: Dough resistance / extensibility

	Extensograph [®]	Alveograph [®]
Principle	A dough string is streched with a hook	Air is blown into a dough patty
Area under Curve	Energy	W-Value
Peak height	Resistance P-Value	
Curve length	Extensibility L-Value	
+	Different test times	Short test procedure

Quality control in the flour mill Measuring criteria: Dough resistance / extensibility


Quality control in the flour mill Measuring criteria: Flour starch viscosity

Why is this important for millers?

- Prediction of the baking properties of flour
- Assessment of the suitability of the flour for various applications
- Assessment of the amount of sprout damage
 - Produces sticky dough that results in problems during processing
 - Results in products with poor color and weak texture

Example of applicable methods:

- Amylograph[®]
- Falling Number

Quality control in the flour mill Measuring criteria: Flour starch viscosity

	+	-
Amylograph [®]	Production orientated conditions Curve gives additional information Registration of the whole enzyme spectrum due to gentle heating	Long duration, though high time effort
Falling Number © Perten Instruments	Quick method Easy handling	Boiling water partly deactivates enzymes

Quality control in the flour mill Measuring criteria: Flour starch viscosity

Difference in flour starch viscosity

Difference

- Amylo® = 793 AU (70 %)
- FN = 110s (33 %)

Viscosity
[AU]

89.6 °C

1143 AU

FN = 340 s

0,1 % malt flour

78,1 °C

350 AU

FN = 230 s

Temperature [°C]

Time [min]

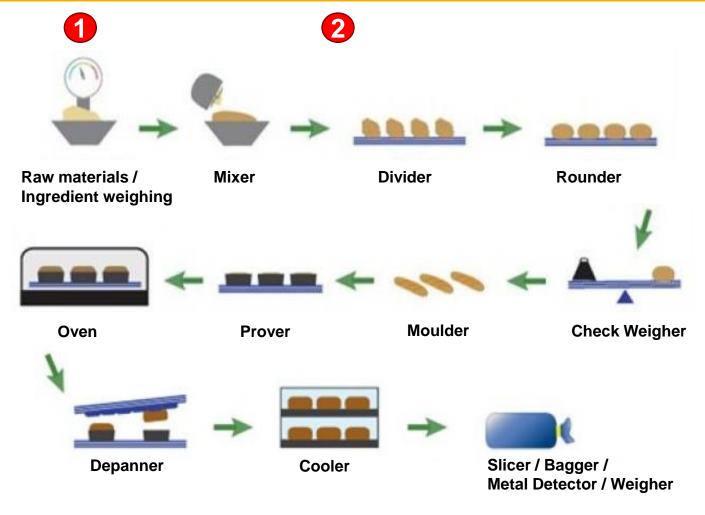
Quality control in the flour mill Measuring criteria: Gluten quality

Why is this important?

- Gluten is responsible for the elasticity and extensibility characteristics of dough
- Stretching and elastic properties of gluten give information about flour quality and the suitability for a given purpose
- Recognition of drying and heat damage on flour and dry gluten

Examples for applicable methods:

- Gluten Peak Test
- Gluten Washing method with Gluten Index



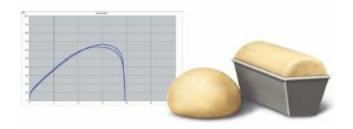
Quality control in the bakery

Quality control in the bakery Where is quality control involved?

- 1. Incoming goods control
- 2: Production control

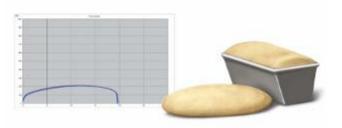
Quality control in the bakery What can bakers achieve and avoid with quality control?

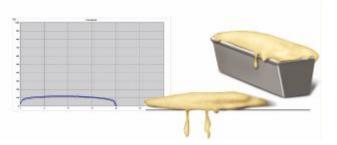
- Quality control for the incoming flour
- Finding optimal flour and baking characteristics
- Find the right application for different flours
- Avoid delays in production and inadequate storage
- Control the production process and minimize production waste
- Control additive effects
- Flour water absorption
- Dough resistance / extensibility
- Flour starch viscosity



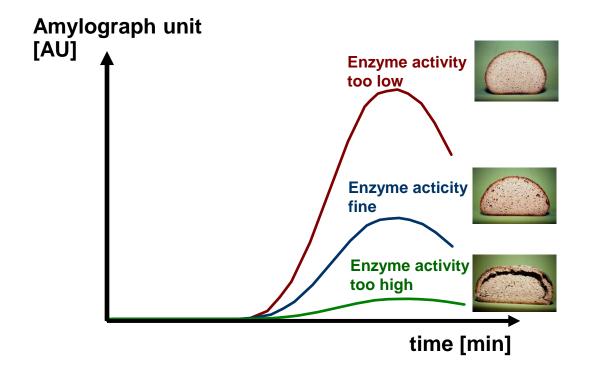
Quality control in the bakery Measuring criteria: Flour water absorption

Optimization of water absorption			
	current	optimized	optimized
Water absorption	57 %	59 %	61 %
Dough per 1 kg of flour	1,57 kg	1,59 kg	1,61 kg
Dough per 1000 t of flour	1.570 to	1.590 to	1.610 to
Additional dough quantity		20 to	40 to
Increased turnover (add. dough * price)		???	???


Quality control in the bakery Measuring criteria: Dough resistance / extensibility


- Strong flour and extensible, elastic dough
- Light, voluminous baking products with a good volume

- Rigid, tough dough structure and poor extensibility
- Results in small pieces of dough with poor spring


- Flour producing a wet, plastic dough
- Small baking volume

Flour not suitable for normal baking products

Quality control in the bakery Measuring criteria: Flour starch viscosity

Trends in quality control

Trends in quality control Growing importance of quality control along the grain chain

- Simplify communication with all members of the grain chain by defining quality standards and specifications
- Avoid the vicious circle of production delays along the grain chain due to wrong deliveries
- Cost optimization along all members of the grain chain

Trends in quality control Growing importance of rapid methods

- Lacking manpower in laboratories of flour mills and bakeries
- Possibility of quick checks on defined specifications in the presence of the supplier
- Examples of rapid methods:
 - Gluten Peak Test (GlutoPeak®)
 - NIR (e. g. Inframatic, DA 7250)
 - Starch damage analysis (SDmatic)
 - Moisture analysis (MT-CA)

Crucial factors in quality control Conclusion

Quality control.

- Raw materials do not have good or bad technological properties
- The processor has to find the best suitable application
- Brabender® is your partner in finding the right application for the supplied grain and the produced flour

