

Leader in flour applications.

Methods and Benefits of Flour Improvement

Lutz Popper, Ph.D., Head R & D Mühlenchemie GmbH & Co. KG Ahrensburg, Germany

Mühlenchemie is a member of the Stern-Wywiol Gruppe

Reasons for Application of Flour Improvers

- or grain from new harvest or
- different varieties or
- different lots
- ø grain damage
- **Reduce grist costs**
- **Improve baking performance**
- **Diversify applicability**
- **Suit customers specifications**

Flour Improvement Procedure

Complete analysis of flour, particularly

- Protein & wet gluten content & properties
- Falling Number
- Farinograph
- Extensograph or Alveograph

Baking trials with estimated treatment

Adjust & optimize treatment

Rheological analysis to establish specifications

Production control by rheological analyses

Additives Used in Flour Improvers

Enzymes

Oxidizing agents

Reducing agents

Emulsifiers

Acidity regulators

Malt flour

Vital wheat gluten

Hydrocolloids

Pulse flour

Preservatives

Maturing Agents for Flour

- Chlorine & chlorine dioxide
- Hypochlorite
- Benzoyl peroxide
- Ascorbic acid, resp.
- Dehydroascorbic acid
- Sodium hypophosphite
- Cystine
- Hydrogen peroxide
- Oxygen

- Potassium bromate
- Potassium iodate
- Calcium bromate
- Calcium iodate
- Azodicarbonamide
- Calcium peroxide
- Ammonium persulfate
- Potassium persulfate
- Acetone peroxide

Effects of Ascorbic Acid in Baking

- Compensates lack of flour maturation
- Improves dough stability
- Improves fermentation tolerance
- Reduces dough extensibility
- Reduces dough stickiness
- Improves dough handling properties and machinability
- Results in finer crumb structure (smaller pores)
- Increases volume yield

Effect of Ascorbic Acid on Baking Results

Wheat flour T 55

Ash	0.497	%
Protein d.b.	13.3	%
Wet gluten	34.3	%
Falling no.	314	S
Water abs.	58.8	%
Gluten index	89	

without treatment

ELCO C-100 3.5 g/100 kg

General Directions for Use of ELCO C-100 in Flour Improvement

<u>Typical dosage: 2 – 6 g per 100 kg flour = 20 – 60 g per ton =</u> <u>20 – 60 ppm</u>

High and soft protein:	6 – 10 g
High and short protein:	2 – 4 g
Low and soft protein:	max. 6 g
Low and short protein:	2 g
Low Falling Numbers (below 2	220 s):

Increase above dosages by 50 %

Enzymes

Leader in flour applications.

No Baking without Enzymes!

In all baking processes, enzymes are involved, because

- flour contains cereal enzymes
- yeast has enzymes to convert flour components into fermentable substances
- Flour & bread improvers contribute additional enzymes to the baking process.
 - for standardization of optimization of the flour's baking performance and for improvement of the end product quality

If all enzyme activities shall be avoided, the flour has to be treated by chemicals (f.i. chlorine) or heat in order to inactivate the enzymes.

- An accordingly treated flour could only be used to produce flat bread, chemically leavened bread, soft biscuits or the like
- Some extruded snack products can be made from enzymeinactive flour.

Enzymes Suggested for Bread and Flour Improvers

Enzyme	Claimed Effect
α-Amylase	Energy supply for yeast, dough viscosity, shelf life
Amyloglucosidase (glucoamylase)	Energy supply, colour, flavour
Ascorbate & amino acid oxidase	Gluten strengthening
Branching enzyme (glucotransferase)	Water binding
Cellulase	Water binding
Furanosidase, arabinofuranosidase	Dough structure, water binding
Ferulic & cumaric acid esterase	Dough structure, water binding
Glutathion oxidase	Gluten strengthening
Glycolipase, galactolipase	Dough stability & volume yield
ß-Glucanase	Structure, liquefaction
Glucose / galactose / hexose oxidase	Gluten strengthening
Hemicellulase, xylanase, pentosanase	Dough structure, water binding, volume yield
Laccase, monophenol oxidase	Dough strengthening
Lipase (triacyl lipase)	Flavour, emulsification, dough stability & vol. yield
Lipoxygenase, lipoxidase	Dough structure, decolorization
exo-Peptidase	Colour, flavour
Peroxidase	Gluten strengthening
Phospholipase	Pore structure & volume yield
Polyphenol oxidase	Gluten strengthening
Protease, proteinase, peptidase	Protein relaxation, liquefaction
Pullulanase	Structure, water binding
Sulfhydryl oxidase & transferase	Gluten strengthening
Transglutaminase	Protein cross-linking, gluten stabilization

LP29012013

Amylolytic Enzymes

Amylolytic Enzymes used in Baking

Effect of α-Amylase on Baking Properties

Break-down of hydrated starch (only mechanically or thermally damaged starch)

Release of water

- Reduction of dough viscosity/consistency
- Improved extensibility
- May cause stickiness if used in excess

Produces "limit dextrins" (branched fragments) and short linear dextrins and finally maltose from linear sections of the starch molecule

- Improved browning
- Improved shelf life
- Better fermentation

Enhanced volume yield and bread aspect

Falling Number – Viscometric Determination of Amylase Activity in Flour

Interpretation of the Falling Number

61 - 150 : extreme sprout damage & amylase activity, can only be used in flour mixes or with strong sour dough

150 - 200 s: sprout damage, very high amylase activity, excessive browning, sticky dough, weak crumb

- 200 250 s: some sprout damage, high amylase, soft crumb, good browning
- 250 300 s: normal amylase activity, normal baking behaviour

300 - 450 s: low amylase, reduced oven rise & browning

> 450 s very low amylase, poor oven rise & browning; heat damage?

Factors Affecting the Falling Number Precision

- Sampling (field, truck, railcar, or bin sample)
- Flour or meal moisture content
- Elevation and barometric pressure
- Stirrer geometry and condition
- Temperature of the meal/flour and water mixture at the start of the test
- Consistency in dimensions of precision test tubes
- Purity and pH of water used in the tube
- Mass of flour or meal and volume of water
- Test tube preparation (mixing, timing)
- Fineness of meal
- Cleanliness of the stirrer and tube
- Instrument hardware
- Air entrainment during agitation

Dosage Recommendation for Fungal α-Amylase

Falling number	Type 405 / 550, 70-75 % extraction	Type 812 / 1050, 80-85 % extraction
220 – 240	20	0
240 – 260	25	0
260 – 280	40	20
280 – 300	45	40
300 – 320	55	45
320 – 350	65	> 55
350 – 380	80	-
>380	> 100	· · · · ·

Strong gluten allows for higher dosages

Μü

New Enzymes for the Adjustment of the Falling Number

Deltamalt FN-A and Deltamalt FN-B – Intermediate Heat-stable Amylases

Comparison of the Effect of Alphamalt, Betamalt and Deltamalt on the Falling Number

Wheat flour T 550

Baking Trials with Falling Number-Reducing Amylolytic Enzymes

LP10122015

22

MC Products for Reduction of the Falling Number Mühlenchemie

Product	Composition Dosage ppm		Properties	
EMCEmalt	Malted wheat flour	500-2,000	reduces FN, little effect on vol., sticky dough possible	
Alphamalt VC 5000	Fungal amylase	50-500	little effect on FN	
Betamalt 25 FBD	Barley & wheat amylases	50-250	good effect on FN	
Deltamalt FN-B	Barley & fungal amylases	50-250	good effect on FN & volume	
Deltamalt FN-A 5000	Fungal amylase, heat stable	20-250	good effect on FN & volume	
Deltamalt FN-A 85	Fungal amylase, heat stable	2-20	good effect on FN & volume, low dosage	

(IIC

makes good flours even better

Hemicellulases

Pentosanases, Xylanases and Co.

Leader in flour applications.

LP27022002

Enzymatic Hydrolysis Sites in Wheat Xylan

hlenchemie

Effect of Various Xylanases on Pentosan* Viscosity

Summary of the Effects of Xylanases

Break down xylan backbone Soften gluten-xylan network Hydrolyse soluble and insoluble pentosans \bullet initial increase of water absorption \rightarrow dough drying \bullet release of water \rightarrow softening of gluten Improve extensibility **Dough softening Volume increase of baked goods** Can be used to achieve finer or coarser crumb May cause stickiness if not suitable or overdosed

Oxidases

Leader in flour applications.

Some Oxidizing Enzymes

- Glucose oxidase
- Galactose oxidase
- Hexose oxidase
- Sulfhydryl oxidase
- Phenoloxidase (laccase)
- Peroxidase
- Katalase

Effects of Glucose Oxidase in Dough

hlenchemie

Effect of Glucose-Oxidase on Dough Development

Tre

Mühlenchemie makes good flours even better

Stress test by over-proof of dough pieces

Wheat flour: German soft wheat; rolls

Summary of the Effects of Oxidases

- Create hydrogen peroxide
- **Cause cross-linking of proteins and pentosans**
- "Inactivate" softening (reducing) substances such as cysteine or glutathione
- **Increase water absorption**
- **Result in dryer dough surfaces and hence better handling properties**
- Improve the opening of the cut, f.i. of baguette
- **Improve dough stability**
- Help to preserve the dough shape in long fermentations

Carboxyl Esterase

Lipase, Phospholipase, Galactolipase & Co.

Leader in flour applications.

Simplified Classification and Distribution of the Main Lipids in Wheat Flour (averages; % d.s.)

Modif. from Pomeranz & Chung, 1978, using data from Chung & Ohm, 2009

AllC

Mühlenchemie

makes good flours even bett

Action of Lipolytic Enzymes

Formation of Lipoprotein Complexes by Phospholipids

(Ifc

Mühlenchemie makes good flours even better

Gas Cell Stabilization by Proteins, Lipids and Arabinoxylans

Protein

LP22032016

Polar lipid

Arabinoxylan

Effect of Lipase and Various other Enzymes on the Alveogram

ühlenchemie

VC 5000 = alpha-amylase from *Aspergillus oryzae*, 5,000 u/g (SKB) HCF = hemicellulase from *Trichoderma reesei* B 2000 (Alphamalt Pro) = protease from *Aspergillus oryzae* Gloxy 4090 = glucose oxidase from *Aspergillus niger*, 1,500 u/g

Effect of Dosage and Proof Time on Baguette Rolls with *Alphamalt EFX Super*

Carboxyl Esterase Boosts the Baking Results

ELCO C 100K:Ascorbic acid, 100 %Alphamalt A 15140:Amylase, 140,000 SKB/gAlphamalt HC 13045:HemicellulaseAlphamalt Gloxy 14080:Glucose oxidaseAlphamalt EFX Mega:Carboxyl esterase

Reference

ELCO, 50 ppm A 15140, 10 ppm ELCO, 50 ppm A 15140, 10 ppm HC 13045, 30 ppm ELCO, 40 ppm A 15140, 10 ppm HC 13045, 30 ppm Gloxy 14080, 20 ppm EFX Mega, 10 ppm

Summary of the Properties of Carboxyl Esterases

- Produce emulsifier-like substances from lipids
- Enhance dough stability
- Increase volume yield
- Result in fine porer structure
- Enhance crumb whiteness be physical (shallower shadows) and chemical (indirect bleaching) effects
- Improvement of initial crumb structure & bread volume \rightarrow
- Improved crumb softness after storage
- May cause off-flavour if not compatible with involved lipids

Résumé

Leader in flour applications.

Improvement of Baking Properties and Baked Product Quality by Enzymes

Baking	Problem	Enzymatic solution
Dough	Short dough	Amylase, xylanase, protease
	Slack dough	Glucose oxidase, xylanase
	Low rising power	Amylase, glucoamylase
	Sticky dough	Glucose oxidase, xylanase
Baked good appearance	Volume yield	Amylase, xylanase, carboxyl esterase
	Shape	Amylase, xylanase, glucose oxidase
	Cut & shred	Glucose oxidase
	Coloration	Amylase, glucoamylase
	Crust flaking	Glucoamylase, amylase
	Blisters (frozen dough)	Carboxyl esterase
Crumb	Crust separation (f.d.)	Carboxyl esterase, amylase
	Pore structure	Carboxyl esterase, xylanase
	Crumb color	Lipoxygenase, lipase, xylanase
	Softness	Amylase, xylanase, carboxyl esterase
	Shelf-life of softness	Amylase

Typical Effects of Enzymes on Bread Quality used at common dosages

Enzyme	WA ⁽¹⁾	Volume ⁽²⁾	Stability ⁽³⁾	Cut ⁽⁴⁾	Colour ⁽⁵⁾	Crumb ⁽⁶⁾	Shelf-life ⁽⁷⁾
α -Amylase, fungal	0	++	-	+	+	-	+
α -Amylase, cereal	-	+		-	++		+
α -Amylase, bacterial	-	(+)	(-)	ο	ο	-	+
α -Amylase, maltogenic	ο	ο	ο	ο	ο	Ο	++
Xylanase _{WUX}	+	++	+	+	ο	+	(+)
Xylanase _{WEX}	-	+	-	-	ο	-	0
Protease	Ο	(+)	(+)/-	+	ο	(-)	0
Oxidase	++	+	++	++	ο	+	(+)
Carboxylesterases	+	++	+	+	ο	++	+
Transglutaminase	ο	ο	+	+	0	ο	0

(1) Water absorption (2) Baking volume yield (3) Shape stability (4) Opening of the cut, shred (5) Crust colour (6) Crumb fineness (7) Non-microbial shelf-life

Case Study: Cost Savings by Reduction of Strong Wheat

HRW in grist	(%)	30	20	10	0
French wheat	(\$/MT flour)	224.28	256.32	288.36	320.40
HRW	(\$/MT flour)	118.62	79.08	39.54	0.00
EMCEgluten ^{Plus} Baguette	e* (ppm)	0	250	450	650
	(\$/MT flour)	0.00	4.43	7.98	11.52
Ascorbic acid	(ppm)	0	0	0	30
	(\$/MT flour)	0.00	0.00	0.00	0.53
Total cost	(\$/MT flour)	342.90	339.83	335.87	332.45
Savings	(\$/MT flour)	0.00	3.07	7.02	10.44

* Improver premix incl. hydrocolloids and enzymes