Total Quality Management & Use of Running Averages in Milling Operation

22nd Annual IAOM Mideast & Africa District

Conference & Expo Dead Sea, Jordan J. A. Gwirtz, Ph.D.

Five Precepts of Total Quality

- All work is a process
- Processes can be improved continually
- Ultimate Judge of Quality-Customers
- Variation is endemic
- Minimize variation improve quality

Important Questions

- Is it necessary?
- Is there a simpler way?
- Can this task be combined with others?

Customer-Satisfaction-Oriented Benefits

- Product Quality
- Product Design
- Production Flow
- Employee Moral/Quality Consciousness
- Product Service
- Marketplace Acceptance

Economic Improvements

- Operating Cost
- Operating Losses
- Field Service Cost
- Liability Exposure

Steps to TQM Implementation

- Identify Key Problem Areas
- Measure Control Capability
- Identify Sources of Variation
- Experimental Design
- Economic Study
- Implementation
- Re-evaluation

Problem (Opportunity) Identification

- Recognize a difference between where you are and where you want to be!
- Focus on the critical few rather than the trivial many!
- Can be driven by forces beyond your control!

Pareto Chart

SPC Concepts

- Prevent rather than simply identify defects
- Sources of Variation
 - Random
 - Assignable

SHEWHART CONTROL CHART FLOUR MILL ASH

SIMPLIFIED FISHBONE DIAGRAM

X-BAR, R Chart Analysis

Basic process control methodology

X-BAR, R Chart Analysis

- Requires grouping of replications into sets (group size of N)
- Measure of central tendency or "average" x-bar
- Measure of variability or "range" R
- Establish upper and lower control limits UCL and LCL

X Control Chart: Centr al Line=XLower Control Limit = $X - A_2 R$ **Upper Control Limit = \overline{X} + A_2 \overline{R}** **R** ControlChart: CentralLine= \overline{R} LowerControlLimit= $D_3\overline{R}$ UpperControlLimit= $D_4\overline{R}$

Values for Setting Control Limits

n	\mathbf{A}_{2}	D 4	D 3
2	1.880	3.267	0.000
3	1.023	2.575	0.000
4	0.729	2.282	0.000
5	0.577	2.115	0.000
6	0.483	2.004	0.000
7	0.419	1.924	0.076

Second Break Release X-Bar

Second Break Release Range

Process is in control when....

- Both statements below ARE TRUE!
- Average within upper and lower control limits
- Range within groups within upper and lower control limits

Simple Keys for Out of Control

- 1. Points beyond UCL or LCL
- 2. Long run (5-7 points) above or below the center line
- 3. Two out of 3 consecutive points are in the third standard deviation zone
- 4. Obvious trend or shift

More Complex Keys

- 1. A point beyond the sixth standard deviation
- 2. Two of 3 consecutive points in the third standard deviation
- 3. Four of 5 successive points are in the second standard deviation zone or beyond
- 4. Eight successive points in the first standard deviation zone or beyond

More Complex Keys Cont'd

- 5. One or more points fall beyond the upper or lower control limits
- 6. A run of 7 or more points lies above or below the center line
- 7. Cycle or non-random patterns
- 8. 8 successive points on the same side
- 9. 11 of 12 successive points on the same side
- 10. 13 of 15 successive points on the same side

Grouping

		Measurement											
		1	2	3	4	5	6	7	8	9	10	11	12
6	1												
io	2												
vat	3												
Ser	4												
SqC	5												
U	6												

Average

--G-5

Average --G-10

How Many is Enough?

- Reflect of Reality
 - Average
 - Variation
- Risk of Overstating
- Risk of Understating

How Many is Enough?

- Reflect of Reality
 - Average
 - Variation
- Risk of Overstating
- Risk of Understating

Numbers

- Average
- Standard Deviation
- Time period

Cumulative Average

Cumulative Average

Cumulative Standard Deviation ---Std. Dev.

Cumulative Standard Deviation --Std. Dev.

Running Average

Observations

→RA-3

Observations

--RA-5

Observations

→RA-10

Where Do You Want To Be? Flour Moisture Distribution

→ 13.75,0.13 **→** 13.85,0.13

Changing the Standard Deviation Flour Moisture Distribution

→ 13.75,0.50 **→** 13.75,0.25 **→** 13.75,0.13 **→** 13.75,0.065

Changing the Average Flour Moisture Distribution

→ 13.5,0.50 **→** 13.75,0.50

Designing the experiment...Why Repeated Measures?

- Measure of Variability
- Risk of Understating
- Risk of Overstating
- Estimate Probability of Achieving Goals

Statistical Experiment

Gr	oup 1	Gro	oup 2	
Mean	Std. Dev.	Mean S	Std. Dev.	Difference
60	0.87	59	1.05	1
60	0.87	58	1.05	2
60	0.87	57	1.05	3
60	0.87	56	1.05	4
60	0.87	55	1.05	5

Mean Difference of Five

Group Size 7 Range 2 5 6 8 3 4 9 10 1 7% 23% 16% 11% 5% 3% 2% 2% 1% 0% <4 15% >6 24% 11% 8% 7% 4% 2% 1% 1% 1% Ν 500 498 499 497 496 495 494 493 492 491 Total 47% 31% 22% 16% 12% 7% 4% 2% 1% 3%

Mean Difference of Four

	Group Size									
Range	1	2	3	4	5	6	7	8	9	10
<3	20%	13%	8%	5%	4%	3%	2%	1%	1%	1%
>5	26%	16%	13%	10%	8%	7%	5%	4%	3%	2%
Total	46%	29%	21%	15%	12%	10%	7%	5%	4%	3%
Ν	500	499	498	497	496	495	494	493	492	491

Mean Difference of Three

	Group Size									
Range	1	2	3	4	5	6	7	8	9	10
<0	2%	0%	0%	0%	0%	0%	0%	0%	0%	0%
<2	23%	17%	11%	8%	5%	4%	4%	3%	2%	2%
>4	21%	15%	9%	5%	3%	1%	0%	1%	0%	0%
Total	44%	32%	20%	12%	8%	6%	4%	4%	2%	2%
Ν	500	499	498	497	496	495	494	493	492	491

Mean Difference of Two

	Group Size									
Range	1	2	3	4	5	6	7	8	9	10
<0	6%	3%	1%	0%	0%	0%	0%	0%	0%	0%
<1	20%	14%	11%	7%	5%	2%	1%	0%	0%	0%
>3	25%	16%	12%	7%	6%	4%	4%	3%	2%	1%
Total	45%	30%	23%	14%	10%	7%	5%	4%	2%	1%
Ν	500	499	498	497	496	495	494	493	492	491

Mean Difference of One

Group Size Range 6 2 3 5 7 8 9 10 1 4 <0 19% 11% 9% 4% 3% 2% 1% 1% 0% 0% >2 21% 15% 10% 8% 7% 6% 5% 4% 4% 27% Total 46% 15% 11% 5% 4% 32% 9% 24% 7% 6% 499 Ν 500 498 497 496 495 494 493 492 491

Effect of Observations on Difference Estimates

→ Difference → L 95% CI → U 95% CI

Observations

Simple Payback Analysis

	Year										
∆Yield (%)	Initial Invest. (\$Million)	1	2	3	4	5	6	7	8	9	10
0	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
1	(0.4)	(0.2)	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6
2	(0.8)	(0.6)	(0.4)	(0.2)	0.0	0.2	0.4	0.6	0.8	1.0	1.2
3	(1.2)	(1.0)	(0.8)	(0.6)	(0.4)	(0.2)	0.0	0.2	0.4	0.6	0.8
4	(1.6)	(1.4)	(1.2)	(1.0)	(0.8)	(0.6)	(0.4)	(0.2)	0.0	0.2	0.4

PDCA Cycle

Final Thoughts

- Identify Key Problem Areas
- Measure Control Capability
- Identify Sources of Variation
- Experimental Design
- Economic Study
- Implementation
- Re-evaluation

Thank You!

