

WHEAT MILLING QUALITY: INFLUENCING FACTORS AND NEW METHOD OF ASSESSMENT

- J. Abecassis¹, C. Bar l'Helgouach², A. Dubat³, P. Lasme^{1,2}, V. Lullien-Pellerin¹
- (1) INRA, UMR IATE, Montpellier, France
- (2) Arvalis-Institut du Végétal, Paris, France
- (3) Chopin Technologies, Villeneuve la Garenne, France

IAOM-MEA Conference Cape Town, 3-6 December 2014

Outline

- To explore the structural bases of milling efficiency of wheat
- To develop a small scale milling test

- 1. Definition & factors of wheat milling quality
- 2. Development of a new test mill

Milling Quality

Ability to produce high yield of flour without contamination by peripheral tissues

↑ Percentage of starchy endosperm recovered

Milling Energy

Milling Yield

Flour Purity

Factors of Milling Quality

- Extrinsic factors (commercial quality)
 - Impurities, moisture content, broken kernels, ...
- Regulation factors (regulatory quality)
 - Ash content of wheat and distribution of minerals within the grain
- Intrinsic factors (technological quality)
 - Endosperm to hulls ratio
 - Endosperm texture: hardness and vitreousness
 - Easyness to separate endosperm from bran

Intrinsic Factors of the Milling Quality

Milling Value

Endosperm Texture

Endosperm to Outer Layers Ratio

- Estimation of the flour/bran yield potential
- Not easy to determine:
 - Traditional methods: Grain size, Test weight
 - New physical methods
 - New biochemical methods

Morphological Measurements

Extraction of morphological features

3D parametric modelling of the grain

Comparison of the model with real grain sections

Use of the model for surface & volume determination

Estimation of the voluminal milling yield

Molecular Approach

Predicting Milling Yield Using Biochemical Markers

	Pericarp (%DM)	Interm. layer (%DM)	Aleurone (%DM	Embry. axis (%DM)	Peripher. tissues (% d.m.)	Bran Yield (%DM)
Α	3.4	3.1	6.9	1.0	14.4	16.4
В	3.9	3.4	6.9	0.9	15.1	16.7
С	4.0	2.0	8.5	1.0	15.4	15.5
D	4.1	2.8	7.9	1.1	15.9	17.6

Intrinsic Factors of the Milling Quality

Ratio Endosperm/Outer Layers

Milling Value

Endosperm Texture

Endosperm Texture

Hardness	Vitreousness
Hard / soft	Vitreous/ floury
Physical	Optical
Genetic	Agronomy

How hardness and vitreousness affect milling behaviour?

Milling Quality for Some Cultivars

Some differences between hard and soft wheat types

Larger differences within a same wheat type

Impact of Hardness on Milling Behavior

	Hard	Soft
Break Flour		+++
Sizing Flour	++	++
Reduction Flour	+++	+
Semolina Production	+++	-
Large Bran / Total bran		+
Total flour yield	+	+

Granulometry of Reduction Streams

Mechanical Properties of Endosperm

Mechanical properties of endosperm =

Indicator of easyness of endosperm to be reduced into flour

Endosperm Breakage Ability

EBA depends on vitreousness

For a same hardness class and a same vitreousness level, some varieties deliver flour more easily

Endosperm Texture

- Endosperm texture strongly affects milling behaviour but not the milling efficiency
- Milling energy to reduce endosperm into flour depends either on hardness and vitreousness
- Hardness determines the free starch granule in flour whereas vitreousness is more influential for the flour/farina ratio
- Vitreousness impacts on mechanical properties of hard endosperm: fragile to ductile
- Molecular markors are available for hardness: PIN
- Which factors are involved in the modulation of the endosperm reduction rate?

Intrinsic Factors of the Milling Quality

Ratio Endosperm/Outer Layers

Milling Value

Endosperm Texture

Concept of Separability

Milling Yield

1

Loss of endosperm in bran fraction

Bran / Shorts

Bran contamination in Flour fractions

Separability Endosperm - bran

Separability Index

$$SI = (\%E) - [(\%A) + (\%P)]$$

Relative proportions of extracted:

- Endosperm (%E)
 - Aleurone (%A)
 - Pericarp (%P)

Contamination with Aleurone Cell Walls (% d.m.)

Endosperm-Bran Separability Influencing Factors

Mechanical Properties of Grain Hulls

Mechanical Properties of Hulls

Large variability between hard and soft wheats and within each type of heat

Influence of Cell Wall Polysaccharide Organization on Mechanical Properties

Bran Contamination into Flours

- Breaking stage leads to cellular fractionation of the aleurone layer and hard wheat flours are more enriched in aleurone cell content
- Aleurone enrichment in flour depends on the mechanical properties of hulls (extensibility)
- Mechanicals properties of hulls exhibit a large variabilty
- At molecular level, hulls extensibility could be related to the degree of arabinoxylans crosslinks

Influencing factors for endospermbran separability

Bran Internal View

Soft

Adhesion Between Wheat Tissues

Adhesion force between tissues

Peeling tests

Pulsed-Laser Ablation

Atomic-Force Microscopy

Local composition analysis

Raman Microscopy

Immunolocalization

Endosperm-aleurone border Jääskeläinen et al., 2013,

INRA, BIA

Predicting the Milling Quality

- Several influencing factors affect milling operations, milling yield and flour purity
- Influencing factors may interact
- All these factors must be taken into account to develop a milling test.

2. Development of a New Test Mill

<u>Aims</u>

- To predict the milling quality of wheat cultivars from less than 1kg
- To describe the wheat milling behaviour:
 Break flour yield, reduction flour yield, bran finishing, flour purity, ...
- To obtain a flour whose quality allows to conduct subsequent tests: rheology, breadmaking test, ...

The New Chopin Lab-Mill

A Specific Milling Diagram (Patent)

- 500 g of wheat implemented,
- Tempering wheat to 16 % (H2O)
- 2 breaking stages B1 and B2 with flour extraction 180 μm,
- 2 Reduction stages CL and C
- 5 end-products: break flour, reduction flour, large and fine brans and shorts.

Some New Features

1. Precise and automatic feed rate control

3. Adjustable roll gaps

4. Improved centrifuge sifting

2. Roll speed control

Performances of the New Chopin Lab-Mill

- Comparison of milling performances with a reference mill
- Variability of wheat milling efficiency
- Flour quality

Chopin new Lab Mill

French Milling School in Surgères

Prediction of the Milling Yield

64 % well predicted

Prediction of Bran Ash Content

Flour Ash Content

Reliability of the Chopin Test-Mill

		1 1000 00 10
Average Value	Standard Deviation	C.V. (%)
16,8	0,2	1,0
11,7	0,1	1,1
8,9	0,3	3,4
33,0	0,4	1,0
5,4	0,2	3,4
11,7	0,4	3,4
5,8	0,2	4,0
6,2	0,2	2,4
75,7	0,2	2
	Value 16,8 11,7 8,9 33,0 5,4 11,7 5,8 6,2	Value Deviation 16,8 0,2 11,7 0,1 8,9 0,3 33,0 0,4 5,4 0,2 11,7 0,4 5,8 0,2 6,2 0,2

A reliable tool on a large set of samples and with different operators

Genetic and Environmental Effects on Wheat Milling Quality

- A large experimental network
- 50 cultivars, 9 locations,
 - 2 years
 - 2 nitrogen levels (with and without complementary contribution of 50 units)
- Choice of 32 varieties of 4 DNA groups of PIN b+ (soft, b, c and d) and of 8 growing conditions

Genetic Variability of Milling Efficiency

Hard Type

	Soissons (80.1)	
	Apache (79.7)	
N 4:11:	Euclide (80)	
Milling Yield > 79 %	Isengrain (79.5)	
	Perfector (79.1)	
	Bermude (79)	
Milling Yield	All others	
	Carenius (76.8)	
	Oackley (76.6)	
Milling Yield < 76.8 %	Orvantis (76.4)	
	Quebon (75.1)	
	Timber (75.5)	

Soft Type

Cultivar (Hardness)	Total Flour (%)
Crousty (20)	77.1
Robigus (15.5)	76.1
Ressor (15.5)	75.9
SC 4013 (31)	74.75
Paledor (10.3)	74.75
Astuce (13.4)	74
Innov (6)	71.4

Alveographic Properties of the flour obtained with the Chopin Test-Mill

		W		G		P/L	
	Origin		SD	moy	SD	moy	SD
Soft	N+	133	23	25,03	2	0,31	0,1
	N	103	6	25,13	1	0,24	0,1
b	N+	256	56	23,60	2	0,66	0,2
	N	254	75	24,23	3	0,69	0,3
С	N+	238	97	21,63	4	0,90	0,3
	N	174	51	19,98	3	0,94	0,3
d	N+	225	22	23,75	3	0,59	0,2
	N	164	85	22,20	2	0,60	0,1

Summary

- Milling quality is a key factor within the cereal chain
- There exist large differences of milling quality among wheats: cultivars, endosperm texture, growing conditions,...
- Establishing the structural basis of milling efficiency needs a multiscale approach in order to take into account several factors: morphological, anatomical, mechanical, biochemical,
- Recent data highlights some grain properties as crucial factors: hulls extensibility, endosperm breakage ability
- A new Lab-Mill has been developped to propose a fast screening system to answer breeders demand as well as for grading systems and millers requirements.

Acknowledgements

Consortium « Valeur Meunière »

AFSA- ANMF- Arvalis Institut du Végétal – Danone Vitapole- INRA- IRTAC- Chopin Technologies- Ulice

joel.abecassis@supagro.inra.fr