

The Potential of Enzymes to Improve the Price/ Performance Ratio of Flour

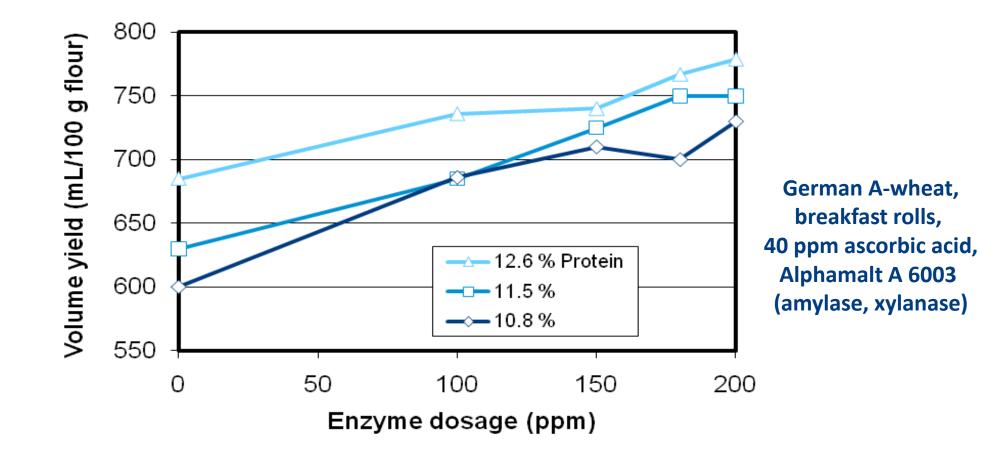
Lutz Popper, Ph.D., Head R & D Mühlenchemie GmbH & Co. KG Ahrensburg, Germany

Mühlenchemie is a member of the Stern-Wywiol Gruppe

Properties of High Quality Bread Wheat

- Good milling yield
- High protein
- Good protein quality
- No damage (frost, sprout, insects, molds)
- Superior baking properties
- Limited availability
- High price

Gluten Quality $\leftarrow \rightarrow$ Flour Quality


Parameters affecting gluten quality

- Wheat variety
- Growing & harvest conditions
- Transport & storage conditions
- Milling
 - Yield, bran separation
 - Air classification
- Flour treatment
 - Vital wheat gluten addition
 - Maturing / softening agents
 - Enzymes
 - Emulsifiers

Gluten Replacement with Enzymes Only?

- Enzymes have always been able to compensate for the lack of protein content in baking!
- Most enzymes have a pronounced effect on dough rheology.

LP31012006

Effect of Basic Flour Treatment on Fino Bread Baking Results

ELCO C 100K: Ascorbic acid, 100 % Alphamalt A 15140: Amylase, 140,000 SKB/g Alphamalt HC 13045: Hemicellulase Alphamalt Gloxy 14080: Glucose oxidase Alphamalt EFX Mega: Carboxyl esterase

Reference

ELCO, 50 ppm A 15140, 10 ppm ELCO, 50 ppm A 15140, 10 ppm HC 13045, 30 ppm ELCO, 40 ppm A 15140, 10 ppm HC 13045, 30 ppm Gloxy 14080, 20 ppm EFX Mega, 10 ppm

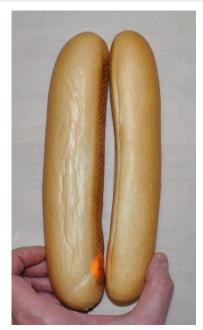
"Gluten Enhancement" in Fino Bread – Trial Parameters

Ingredients	Quantity (g)
Wheat flour ⁽¹⁾	1000
Water	560
Salt	5
Yeast, instant	15
Fat	26
Sugar	40

⁽¹⁾ Ash 0.54 %, protein 11.3 % d.b., wet gluten 26.2 %, Falling no. 444 s, water absorption 55.9 %, stability 5.2 min, softening (12 min) 53 FU

Process parameter	Value
Mixer type	Spiral kneader
Mixing time (min), slow fast	3 6
Dough piece weight (g)	60
Fermentation time (min)	70
Proofing time (min)	100
Baking temperature (°C)	220
Baking time (min)	12

• Reference treatment: ascorbic acid, α -amylase, hemicellulase


 MC treatment: Powerzym 24123 (ascorbic acid, α-Amylase, hemicellulase, carboxyl esterase, glucose oxidase)

LP05112014

"Gluten Enhancement" in Fino Bread – Results

Property	Powerzym 24123	Reference
Dough properties	Extensible, stable	Extensible, slightly sticky
Oven rise	normal	normal
Baking volume (mL/100 g)	854	623
Appearance	Good color, round shape, fine and soft crumb	Less color, flat base

Powerzym Reference

Powerzym

Reference

LP05112014

Grist Cost Optimization with a Gluten Enhancer Compound Containing Enzymes

Background Information

The EMCEgluten Enhancer Range aims at replicating and surpassing the functionality of vital wheat gluten

- Structure and stability
- Water binding properties

The product is an enzyme system imparting

- Dry dough properties & good machinability
- Fine texture
- Good volume
- The goal is to maintain and enhance baking performance by replacing vital wheat gluten, or improving the performance of low gluten flour or composite flours

EMCEgluten Enhancer - Applications


- Replacing vital wheat gluten
- Enhancing weak flours
- Improving hard- and soft wheat blends
- Improving baking properties of composite flours from wheat and non-wheat flour, e.g. cassava, corn or other crops
- Increasing stability, water absorption, volume yield
- Maintain or improve rheological data
- Optimizing costs

Comparison of EMCEgluten Enhancer 21 and 22

Normal proof

Basic treatment: 40 ppm ELCO C-100 (ascorbic acid), 100 ppm Alphamalt VC 5000

0.3 % EMCEgluten Enhancer 21 control

0.3 % EMCEgluten Enhancer 22

MAM03122012

Comparison of EMCEgluten Enhancer 21 and 22

Over-proof Base treatment: 40 ppm ELCO C-100 (ascorbic acid), 100 ppm Alphamalt VC 5000

0.3 % EMCEgluten Enhancer 21 control 0.3 % EMCEgluten Enhancer 22

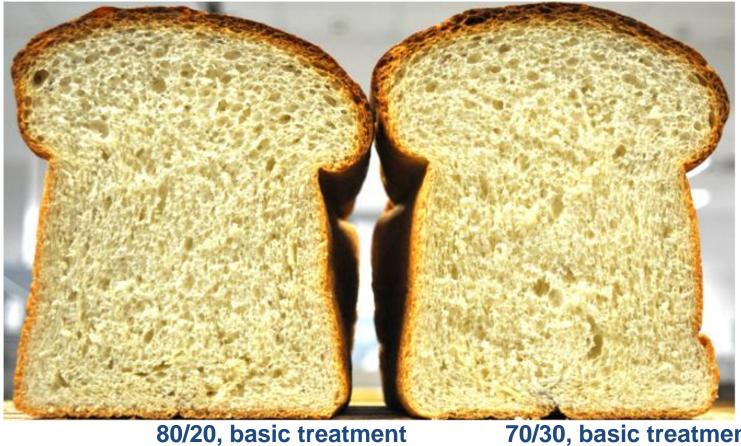
MAM03122012

Application – Grists from Hard and Soft Wheat

Blending hard and soft wheat varieties could lead to:

- Reduction of the protein content
- Decreased water absorption
- Impaired stability
- Impaired volume
- The addition of EMCEgluten Enhancer compensates for about the 100-fold quantity of added soft wheat, i.e. 0.05-0.1 % EMCEgluten Enhancer makes up for 10% soft wheat

Application – Hard- and Soft Wheat Mixtures


Effects of EMCEgluten Enhancer 22 (GE 22)

Hard-/ Soft wheat	100	90/10	80/20	70/30	60/40	50/50
Protein (NIR)	14.8	14.6	14.5	14.2	13.9	13.7
WA Farinograph (%)	64.6	64.1	63.7	63.2	62.7	62.1
Addition GE 22 (%)	0	0.05	0.1	0.2	0.25	0.3
WA Farinograph (%)	64.6	64.5	64.4	64.3	64.3	64.1
Stability Farinograph (min)	20:19	20:04	19:45	19:02	19:05	19:43

Application – Hard- and Soft Wheat Mixtures

Basic treatment: 300 ppm Powerzym S + 50 ppm Alphamalt Gloxy 12082

treatment 70/30, basic treatment + 0.1% EMCEgluten Enhancer 22

Application – Vital Wheat Gluten Replacement

Vital wheat gluten is used in different applications

- It can be used to strengthen weak flours
- It is often used in sandwich bread at 2-8 %, or
- in regional specialties like Easter bread, which may contain >10%
 vital gluten
- Vital wheat gluten prices are volatile and availability varies
- 1 % Vital wheat gluten can be replaced with 0.1 % of EMCEgluten Enhancer
- Economical benefits when vital wheat gluten prices are high
- Savings in logistics and storage cost, because only 10% of quantity is needed

EMCEgluten Enhancer – Product Examples

Product	Ingredients	Mode of operation
EMCEgluten Enhancer 21	Enzymes, vegetable fiber, hydrocolloids	Basic version with guar gum for water absorption
EMCEgluten Enhancer AS	Enzymes, vegetable fiber, ascorbic acid	Dispensation with guar gum, increased fiber, ascorbic acid for stability
EMCEgluten Enhancer 22	Enzymes, vegetable fiber, ascorbic acid	Adapted enzyme system for increased volume, enhanced crumb structure
EMCEgluten Enhancer P	Enzymes, vegetable fibers, ascorbic acid	Price optimized

EMCEgluten Enhancer – Summary of Advantages

- Increased water binding capacity
- Optimized dough stability
- Uniform crumb structure
- Enhanced baking performance for composite flours
- Higher flexibility in gristing / raw material choice
- Cost savings
 - Replacement of gluten at 10% of the dosage
 - Usage of cheaper raw materials possible
 - Increased yield by using cassava etc.
 - Logistics and storage capacity (only 1/10 to be shipped and stored)

Replacement of Strong Wheat Example: Wheat from the U.S.

Triticum aestivum - soft wheat

About 100 varieties in 5 classes, distinguished by:

- Wheat plant appearance
- ♦ Grain hardness →
 - Hard soft wheat (referred to as "Hard Wheat")
 - Soft soft wheat (referred to as "Soft Wheat")
- Grain color

Replacement of Strong Wheat U.S. Wheat Classes

HRW (Hard Red Winter)

- High protein (12%)
- Bread flour
- 40% export
- HRS (Hard Red Spring)

- Very high protein (14%)
- Bread flour
- 20% export
- Includes DNS (Dark Northern Spring)

HWW (Hard White Winter)

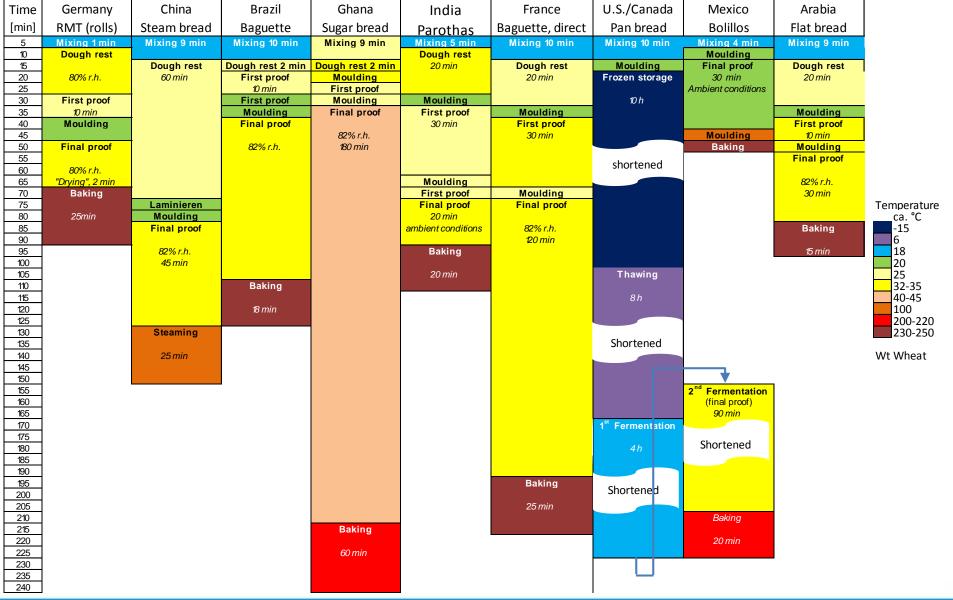
- High protein (12%)
- Noodle / pasta flour
- Captive use
- SW (Soft White)

- Low protein ($\leq 10\%$)
- Flour for corn-flakes, noodles, biscuits
- 20% export

SRW (Soft Red Winter)

- Low protein (10%)
- Flour for flat bread, biscuits
- 20% export

Role of Strong Wheat in Bread Flour Grists


- Raises protein level
- Increase of water absorption
- Improves dough stability and tolerance
- Enhances volume yield

Challenges Associated with Strong Wheat

- Availability
- Logistics
- High wheat cost

Comparison of Baking Procedures by Time and Temperature

LP06102014

Tre

Mühlenchemie

makes good flours even better

Challenge High Wheat Cost Example: U.S. vs. French Wheat

- French wheat at 188 €/t = 256 \$/MT (06/2014, €/\$=1.3634)
- Theoretical yield: 80% → 125 t wheat for 100 t flour

HRW in grist	(%)	0	10	20	30
French wheat	(\$/MT flour)	320.40	288.36	256.32	224.28
HRW	(\$/MT flour)	0.00	39.54	79.08	118.62
Total cost	(\$/MT flour)	320.40	327.90	335.40	342.90
Surplus	(\$/MT flour)	0.00	7.50	15.00	22.50

Technological Properties of EMCEgluten^{Plus} **Baguette**

- Dosage 0.01 0.5% on flour
- Hydrocolloids
 - Water binding, cross-linking, texturization
- Glucose oxidase
 - Stabilized the gluten network
 - Water binding, drying of dough surfaces
- Transglutaminase
 - Strengthens the gluten protein
- Carboxyl esterase (triacyl lipases, phospholipase, galactolipase)
 - Create baking-active lipids
 - Dough stabilization
 - Increase volume yield
 - Create a fine, regular crumb structure

Tre

Flour Evaluation According to BIPEA

Source : ARVALIS-institut du végétal

Replacement of Strong Wheat Baking Trials with EMCEgluten^{Plus} Baguette

HRW		30%	20%	10%	0%	
EMCEgluten ^{Plus} (ppm on flour)	Baguette	0	250	450	650 (+ 3o ppm AA)	
Dough	Elasticity	Good	Good	Good	Good	
	Extensibility	Good	Good	Good	Good	
	Stability	Good	Good	Good	Reduced	
Bread appearence	Shape	Good	Good	Good	Good	
	Cut	Good	Good	Slightly irregular	Slightly irregular	
Volume (ml)	1:30 h	1050	1100	1100	1100	
	2:00 h	1250	1250	1300	1225	

Mühlenchemie

makes good flours even bette

20%

30%

10%

0%

- Fermentation: 1:30 h
- Hearth oven

FVA25062014

HRW

- Fermentation: 2:00 h
- Hearth oven

FVA25062014

HRW

- Fermentation: 2:00 h
- Convection oven

FVA25062014

HRW

Cost Savings by Reduction of Strong Wheat Mühlenchemie makes good flours even better

HRW in grist	(%)	30	20	10	0
French wheat	(\$/MT flour)	224.28	256.32	288.36	320.40
HRW	(\$/MT flour)	118.62	79.08	39.54	0.00
EMCEglutenPlus Baguette	(ppm)	0	250	450	650
	(\$/MT flour)	0.00	4.43	7.98	11.52
Ascorbic acid	(ppm)	0	0	0	30
	(\$/MT flour)	0.00	0.00	0.00	0.53
Total cost	(\$/MT flour)	342.90	339.83	335.87	332.45
Savings	(\$/MT flour)	0.00	3.07	7.02	10.44

(IIC