

Use of a New GH8 Family Xylanase in Baking and Milling

Dr. Irina Matveeva Novozymes A/C

The 24th Annual IAOM MEA
District Conference & Expo's
Technical Session
Sousse, Tunisia, 5-8 November

novozymes* Rethink Tomorrow

Agenda

Arabinoxylan in wheat flour

Xylanase functionality in baking

Substrate specificity

NMR and HPLC results

Naturally uninhibited

Benefits in milling and baking industries

Arabinoxylan in wheat flour

Main wheat kernel components

Starch 65-70%

Proteins 10-12%

Non-starch polysaccharides 2-3%

(NSP)

Lipids 1.5-2%

Arabinoxylan in wheat flour

AX make up 85% of NSP

25-30% is water extractable (WE)

70-75% is water un-extractable (WU)

Extent of AX degradation

Functionality in baking

WU-AX

Gas cell perforation
Coalescence and decreased
gas retention
Lower stability of dough
foam
Lower loaf volumes with
coarser crumb

HMW WE-AX

Increase in viscosity
Redistribution of previously
bound water
Better dough foam stability
and gas retention
Crumb structure homogeneity
and increase in loaf volume

LMW WE-AX

Drop in dough viscosity
Too excessive water release
Risk of too soft and sticky
dough
Poor machinability

Xylanases are vital for bread making

General mode of action for xylanases

Water-unextractable arabinoxylan (WU-AX)

Endoxylanase

Water-extractable arabinoxylan (WE-AX)

Xylose Arabinose

Principles of desired xylanase impact on dough properties

Solubilization of waterunextractable arabinoxylan

Redistribution of water in dough

Improved gluten network
formation

Dry, balanced dough

Extensibility

Elasticity

Stickiness

Softness

Xylanase families used for baking

Substrate specificity?

- How does the GH8 family differ in degradation of arabinoxylan compared to GH11?
- The specificity of GH8 has been investigated by ¹H NMR spectroscopy and HPLC and compared to GH11

HLPC measurements

HPLC:

LW- and HW AX and Insoluble AX 0-1-2-4-6-8-24h 2 GH8, 1 GH11

icoshift chromatograms

Multivariate approach on HPCL data

Substrate specificity

- GH8 is very active and is only cleaving between unsubstituted xylose resulting in large amount of AX oligomers and a small amount of free xylose
- GH11 is slower and is cleaving next to un-substituted and mono-substituted xylose resulting in large amount of free xylose.
- The kinetics and the end-products of GH8 differ from GH11

New xylanase technological tolerance

- Protein engineered in one of the loops lining the active site to modify substrate specificity and thereby reduce dough stickiness
- Naturally uninhibited
- Robust performance regardless of flour types
- High quality bread across different production parameters
- High performance in various bread types

Model of active site of new xylanase

Performance in different recipes

White pan bread

Chorleywood bread

French baguette

Conclusions

New xylanase Panzea is related to GH8 family cleaving between un-substituted xylose resulting in large amount of arabinoxylan oligomers and a small amount of free xylose:

- makes dough more tolerant to different flour quality and variations in processing parameters
- combines superior volume performance and desired texture and appearance with a dry, balanced dough all in one product

THANK YOU ANY QUETIONS?

Acknowledgment for generous contribution of R&D and TS Baking Departments of Novozymes

