

Flour Improvement Update

Dr. Lutz Popper
Mühlenchemie GmbH & Co. KG
Ahrensburg, Germany

Selected Topics

- Sprout-damaged flour
- Gluten enhancement
- Bug-damaged flour
- Noodle flour improvement
- Enzymes: carboxyl esterases
- Outlook: enzymatic bleaching

Sprout Damage

Sprouted wheat, harvest 2010, Germany

Reasons for High α -Amylase Activity

- Sprout damage due to excessive rain falls prior to harvest ->
 - hidden
 - obvious sprouting
- Late frost on immature wheat heads ->
 - "green amylase" not re-metabolized
 - no visible sign for sprout damage

1923

Sprout Damage – Effects

- Falling number, gelatinization temperature, maximum viscosity too low
- Insufficient water absorption
- Sticky doughs
- Weak dough structure
- Excessive browning
- Coarse pore structure
- Crumb structure with lower elasticity
- Good shelf-life of crumb softness

Sprout Damage - Principal Measures

In the flour mill

- Lower extraction rates
- Keep starch damage as low as possible

In the bakery

- Increase acidity by sour dough or acidifiers
- Prepare stiffer doughs
- Reduce energy input upon kneading
- Reduce bench time (safe time for final proof)
- Reduce bread improvers with strong enzyme activity
- Slightly increase sodium chloride, if possible

Flour Treatment in Case of Sprout Damage

- Oxidation & maturing agents (e.g. ascorbic acid)
 - Increase significantly
- Enzymes
 - Reduce dosage of amylase
 - Cautious use of xylanase
 - Consider oxidase
- Emulsifiers (Datem, mono/di, lecithin)
 - Help to reduce stickiness
 - Improve dough stability
- Enzyme regulators
 - Help to control effect of intrinsic enzymes

Effect of Enzyme Regulator Rowelit on Falling Number and Volume Yield

Effect of ROWELIT on Wheat Flour Amylograms

Correlation of Falling No. & Amylogram

Effect of Rowelit Variants on the Falling Number

Low-Protein Flour – Reasons & Effects

Reasons

- Wheat variety
- Growth conditions
- Fertilization

Effects

- Low extensibility
- Little tolerance
- Reduced volume yield

1923

Low-Protein Flour – Measures

- Blending
- Air classification
- Finding the best application
- Gluten addition
- Stabilization of the gluten
 - Oxidative treatment
 - Enzymes
 - Emulsifiers
 - Minerals and salts
 - Synergistic proteins & polymers

Gluten Enhancer – US Sandwich

Basic treatment

BX 350 ppm SSL 4,000 ppm

Sample No.	Null	Α	В	С
EMCEvit C (%)	-	3	1.5	-
EMCEglutenPlus(%)	-/-	-	0.08	0.10
Vol. yield (ml/100 g flour)	840	910	920	910
Costs (USD/t flour)		83.2	47.9	10.9

Farinographs with EMCEgluten Plus Gluten Enhancer – Basic Treatment: SSL and Alphamalt BX

LP02112008

Gluten Enhancer – Venezuela Baguette, 16-19 h Fermentation, 10% Protein

Basic treatment

Oxem 100⁽¹⁾ 40 ppm C 100-K⁽²⁾ 20 ppm A 14888⁽³⁾ 150 ppm

- (1) Azodicarbonamide
- (2) Ascorbic acid
- (3) Enzyme compound
- (4) Vital wheat gluten
- (5) Gluten enhancer

Sample No.	Null	Α	В	С	D	E	F	G
EMCEvit C ⁽⁴⁾ (%)	-	3	1.5	1.5	0.75	-	-	-
EMCEglutenPlus (5) (%)	-	-	0.08	-	0.04	0.10	0.20	0.30
Vol. yield (ml/100 g flour)	550	690	680	620	650	685	750	800
Costs (USD/t flour)		81.8	49.6	40.9	20.9	10.9	21.8	32.7

Gluten Enhancer – Venezuela Baguette, 16-19 h Fermentation, 12% Protein

Basic treatment

Oxem 100⁽¹⁾ 40 ppm C 100-K⁽²⁾ 20 ppm A 14888⁽³⁾ 150 ppm

- (1) Azodicarbonamide
- (2) Ascorbic acid
- (3) Enzyme compound
- (4) Vital wheat gluten
- (5) Gluten enhancer

Sample No.	Null	Α	В	С	D	E
EMCEvit C ⁽¹⁾ (%)	-	3	1.5	-	-	-
EMCEglutenPlus (5)(%)	-	-	0.08	0.10	0.20	0.30
Vol. yield (ml/100 g flour)	580	635	730	670	700	750
Costs (USD/t flour)		81.8	49.6	10.9	21.8	32.7

Gluten Enhancer Benefits

- Dosage only 400 3,000 ppm
- Can replace 50% and more of added gluten
- Upgrades low protein flour
- Boosts vital wheat gluten function
- Does not interfere with standard flour treatment or bread improvers
- Improves rheological and baking properties
- Lable-friendly

Bug-Damaged Flour1923

Bug-Damaged Flour – Culprits 1 (Sunn Pest)

makes good flours even better

Bug-Damaged Flour – Culprits 2 (Sunn Pest)

www.uvm.edu/~entlab/sunnpest

Howard F. Schwartz

Mühlenchemie

makes good flours even better

21st Annual IAOM Conference, Cape Town, 22-25 Nov. 2010

Bug-Damaged Wheat Kernels

Bug-Damaged Flour – Reasons

- Infestation on the field Sunn pest
 (Eurygaster integriceps, Eurygaster maura,
 Aelia acuminata, Aelia rostrata, Nysius huttoni)
- Secretion of digestive enzymes into the grain (and into the stem ?)
- Gluten degradation during dough preparation

(II)

Bug-Damaged Flour – Effects (1)

- Wheat grain: almost invisible dark spots (punctures) surrounded by lighter circles
- Some grains shriveled or lighter, but hectoliter weight mostly unchanged
- Falling number normal
- Sedimentation almost normal

1923

Bug-Damaged Flour – Effects (2)

- Gluten index lower, close to normal
- Swelling index lower
- Extracted gluten liquefies upon resting
- Farinograph: very low stability, narrow curve
- Sticky & runny doughs with low resistance
- Low baking performance
- Bitter taste

Bug-Damaged Flours – Rheology

makes good flours even better

Comparison of Bug-Damaged with Protease-Treated Flour in the Farinograph

Bug-Damaged Flour – Measures

- Conditioning at increased moisture & temperature (?*)
- Blend with sane flour but reduce damaged part to a minimum
- Reduce dough resting times to a minimum
- Use improvers that
 - a) strengthen the gluten
 - b) block the insect enzymes
 - c) improve overall baking properties
- Choose suitable application: e.g. biscuits, crackers or wafers

^{*} e.g. Berlin, E. 1936. Die Mühle, 73(5), 129-130, or Kretovich, VL, 1944. Cereal Chem. 21(1), 1-17

Reducing the Effects of Bug Damage (1)

Alphamalt BE 19124: Enzymes, maturing agents

100 % bug-damaged flour

50 % bug-damaged flour 50 % sound flour

Mühlenchemie

makes good flours even better

Wheat flour T800, Romania, harvest 2009

Reducing the Effects of Bug Damage (2)

Alphamalt WT 1: Enzymes, ascorbic acid, pH control

Wheat flour T550, Romania, harvest 2010

Reducing the Effects of Bug Damage (3)

Alphamalt WT 1: Enzymes, ascorbic acid, pH control

Wheat flour T550, Bulgaria, harvest 2010

Noodle Flour Improvement

1923

Desirable Properties for Noodle Flour

- Easy processing
 - soft & extensible dough required
- Uniform & quick drying
 - low water absorption
- Tolerance towards moisture from fillings
 - firm and closed (uniform) dough structure
- Low leaking losses upon cooking
 - firm and closed (uniform) dough structure
 - low starch damage
- High cooking tolerance (low "soakiness")
 - firm and closed (uniform) dough structure
 - low starch damage
 - good protein quality

Pastazym

Advantages of Pastazym for Noodles

- Improves color and brightness of dry and cooked noodles
- Increases firmness of cooked noodles
- Enhances overcooking tolerance
- Reduces oil uptake of fried instant noodles
- Reduces drying time of noodles
- Improves surface appearance
- Enhances mechanical stability of dried noodles
- Reduction raw material costs

Firmness of Fresh, Uncooked Noodles

Improvement of Over-Cooking Tolerance with Pastazym

Mulgaprime 90F - Flour-grade Destilled Monoglyceride for Noodle Improvement

Advantages of Mulgaprime 90F

- Improves dough handling properties
- Enhances tolerance towards drying-out
- Strengthens dough structure of fresh noodles
- Improves the tolerance towards moisture from fillings
- Reduces crack formation
- Increases cooking tolerance

Effect of Mulgaprime 90F on Pelmeni Structure

Enzymes: Carboxyl Esterases

Esterases and Their Applications in Food

Enzyme	Reaction Catalysed	Applications
Lipase (triacylglycerol lipase)	Splits fats and lipids into fatty acids and glycerol or other alcohols	Maturing of cheese; emulsifier production; interesterification of fats; baking
Phospholipase A ₂		Improvement of emulsifying power (e.g. egg yolk); degumming
Phospholipase A ₁	Hydrolyses phospholipids (lecithin)	
Lyso-phospholipase		
Galactolipase	Splits fatty acids off galactolipids	Improvement of emulsifying power; baking
Acetyl esterase	Splits off acetyl groups, e.g. from pectin or xylan	Baking; fruit juice
Pectin esterase	Splits methyl groups off pectin	Clarification of fruit juice; gel formation; stabilizing of fruit
Exo- and endonucleases	Splits nucleic acid between phosphate and nucleobase	Flavour; yeast extract
Feruloyl esterase	Splits off ferulic acid, e.g. from wheat xylans	Flavouring; baking
Coumaroyl esterase	Splits off cumaric acid, e.g. from wheat xylans	Flavouring; baking
Phytase	Removes phosphoric acid from phytate	Digestibility & bioavailability

Action of Lipolytic Carboxyl Esterases

makes good flours even better

Lipids in Wheat Flour

Total lipids*	1,280
Non-polar lipids	457
Polar lipids	823
Phosphatides (lecithin)	250
Phosphatidyl acid	30
Phosphatidyl glycerol	51
Phosphatidyl cholin	27
Phosphatidyl ethanolamine	traces
Phosphatidyl serine	15
Lyso-phosphatidyl cholin	117
Lyso-phosphatidyl ethanolamine	10
Galactolipids	249
Other polar lipids	320

^{*}mg/100 g wheat flour 0.405 % ash

Effect of Wheat Lipids on Volume Yield of Defatted Wheat Flour

Modif. from MacRitchie & Gras, 1973

Effect of Dosage and Proof Time on Baguette Rolls with Alphamalt EFX Super

Outlook: Enzymatic Bleaching

Basidiomycetes – in vitro Cultivation

1923

R. Berger, 2009

R. Berger, 2009

Degradation of Carotenoids – Screening for Suitable *Basidiomycetes*

screening for β -carotene bleachening

SNL agar plate with \$\beta\$-Carotene emulsion

1923

screening for enzyme activity

Detection

Laccase: ABTS

Peroxidase: Pyrogallol / H₂O₂

Tyrosinase: *p*-Cresole

Lipase: α -Naphthyl decanoate

Esterase: α -Naphthyl acetate

Lipoxygenase – Bleaching of Lutein in Dough

300 g flour, 196 mL water, 4 g Lutein

 $LOX 2 = 5 \text{ u/mL} \rightarrow 3.0 \text{ u/kg}$

 $LOX 9 = 2 \text{ u/mL} \rightarrow 1.2 \text{ u/kg}$

Thank You for Your Attention!

1923

IAOM Expo, booth no. 42 www.muehlenchemie.de