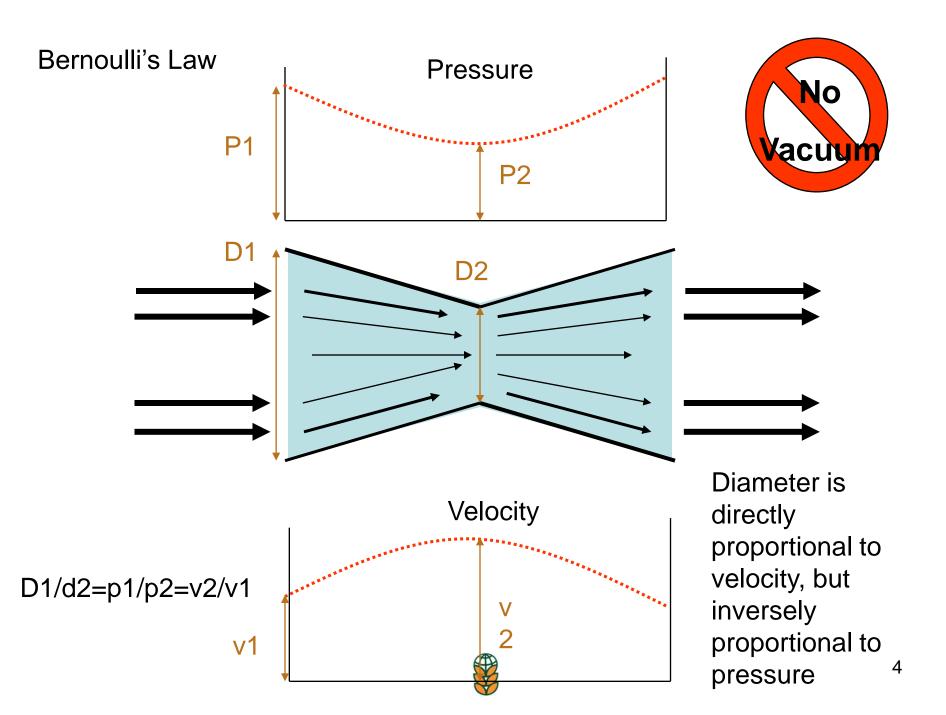
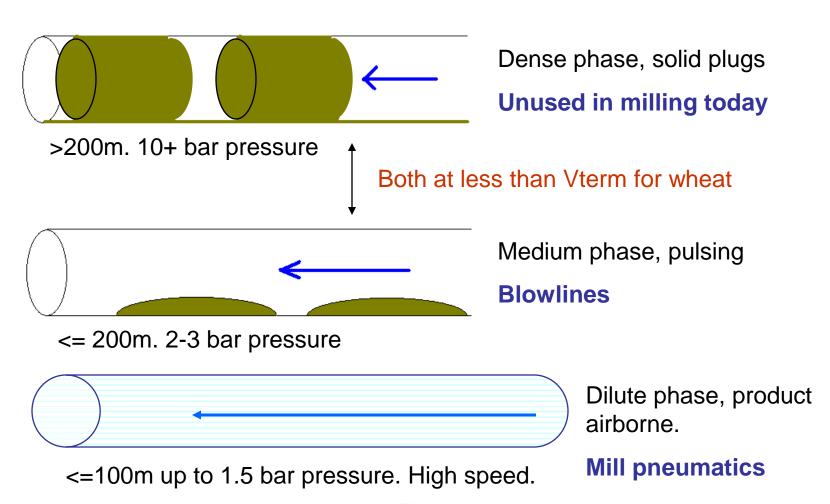
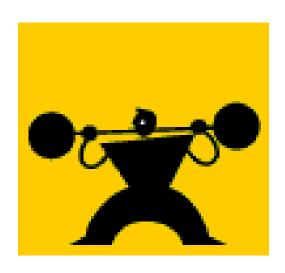


Peter Lloyd - US Wheat Associates Inc, Casablanca


A pastime nobody enjoys!


In summary

- Pneumatic conveying is quite simple pneumatic <u>systems</u> are NOT.
- This presentation is not designed to teach you how to design a system, but to understand how one works.
- PLEASE REFER TO YOUR EQUIPMENT
 SUPPLIERS FOR GUIDANCE!! they are the
 only ones who know everything about how
 YOUR system was designed.



Pneumatic Conveying phases;

Mixing Rates: the ability of air to carry products.

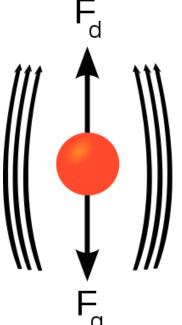
Most people can easily carry 25kg.

It is all about the WEIGHT of air and the weight of products.

Come and see us in Morocco

Understanding the basics.

- Terminal Velocity
- Volume and density.
- Resistance and pressure.


Terminal Velocity – Wikipedia ®

A free-falling object achieves its terminal velocity when the downward force of gravity (F_q) equals the upward force of $\underline{\text{drag}}$ (F_d). This causes the $\underline{\text{net force}}$ on the object to be zero, resulting in an acceleration of zero. As the object accelerates (usually downwards due to gravity), the drag force acting on the object increases, causing the acceleration to decrease. At a particular speed, the drag force produced will equal the object's weight (mg). At this point the object ceases to accelerate altogether and continues falling at a constant speed called terminal velocity (also called settling velocity). Terminal velocity varies directly with the ratio of weight to drag. More drag means a lower terminal velocity, while increased weight

means a higher terminal velocity.

An object is moving at its **terminal velocity** if its speed is

constant due to the restraining force exerted by the air

Determining V_{TERM}

At equilibrium, the net force is zero (F = 0);

$$F_{net} = ma = mg - \frac{1}{2}\rho v^2 A C_{\rm d} .$$

At equilibrium, the net force is zero (F = 0);

$$mg - \frac{1}{2}\rho v^2 A C_{\rm d} = 0 .$$

 V_t = terminal velocity, m = mass of the falling object, g = <u>acceleration due to</u> <u>gravity</u>,

 $C_d = \underline{drag\ coefficient_s}$ $\rho = \underline{density\ of\ the\ fluid\ through}$ which the object is falling, and $A = projected\ area\ of\ the$ object.

Solving for *v* yields

$$\sqrt{\frac{2mg}{\rho AC_{\mathbf{d}}}}$$
.

Terminal Velocity – imperial and metric units

1530

1220

190

25.50

20.33

3.17

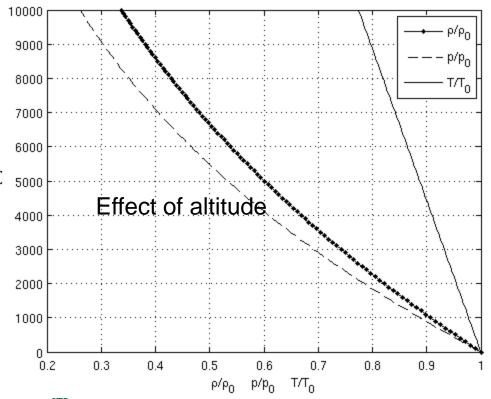
	m/sec	ft/min	ft/sec
Corn	9.19	1810	30.17
Soybeans	8.13	1600	26.67
Sorghum	8.18	1610	26.83

7.77

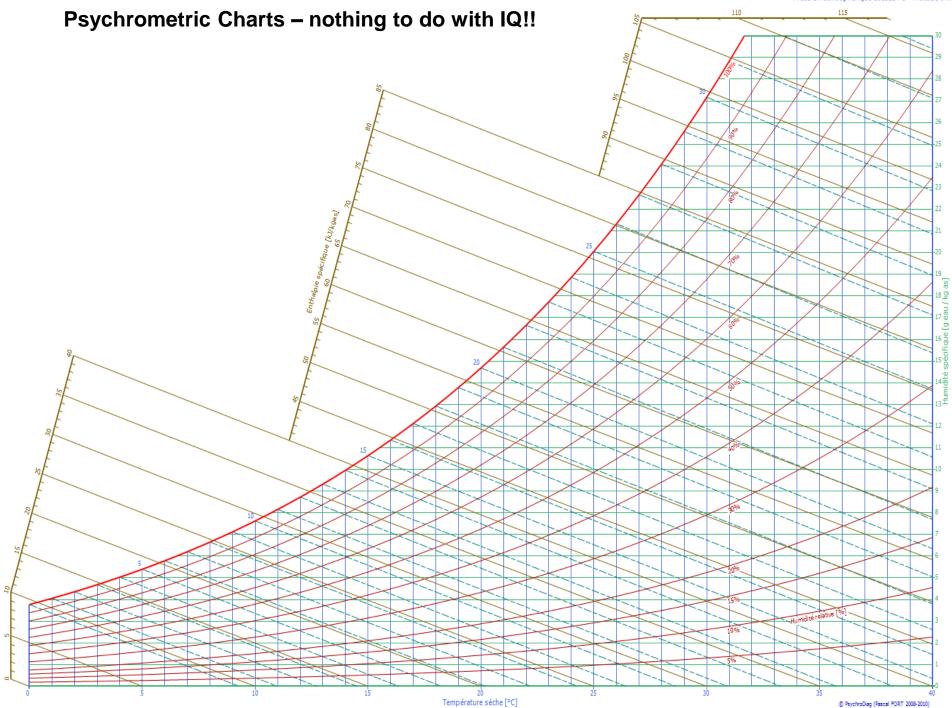
6.20

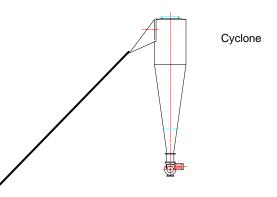
0.97

Wheat grains

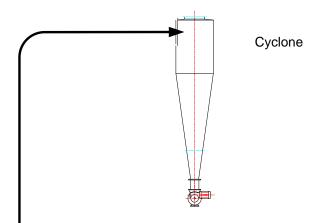

Grain dust

Oats


Effect of temperature			
Temperature	Density of air		
in <u>°C</u>	ρ in <u>kg</u> ·m ⁻³		
0	1.292		
+5	1.269		
+10	1.247		
+15	1.225		
+20	1.204		
+25	1.184		
+30	1.164		
+35	1.146		

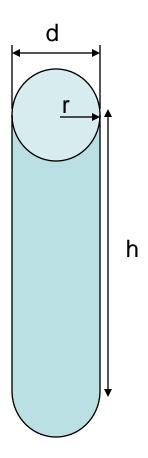

- Air density is 1.2kg/M3 at 16° C at sea level.
- Density reduces with temperature and altitude.
- In most parts of North Africa, in summer, the air density can be considered as approximately 1.1 kg/M3

Air Density



Low pressure pneumatic system of 1960's

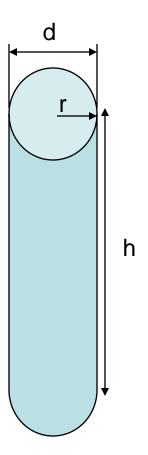
Very efficient use of power Large diameters, low velocity, low pressure and low Kw/ton

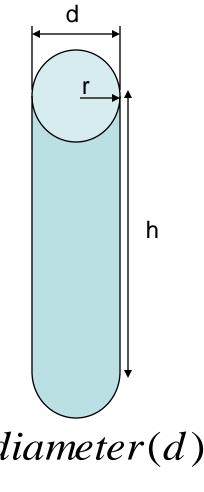


High pressure pneumatic system of today

Small diameters, high velocity, high pressure

Mechanical accelerator




 $Volume = (\pi . r^2 . h)$

$$\frac{volume}{\pi^*h} = r^2$$

$$2x \sqrt{\frac{volume}{(\pi.h)}} = diameter(d)$$

In 1 Second:

H = (velocity of air * 1000) in mm/sec $Volume = (M^3/minute) * (1000^2/60) in mm^3/sec$

$$2x \sqrt{\frac{volume}{(\pi.h)}} = diameter(d)$$

For example;

- Feedrate = 1.0kg/sec (3,600kg/hr)
- Mixing rate = 2.5kg/kg of air
- Air Velocity = 22m/sec
- Air Density = 1.2kg/m³

$$Conveying Volume = \frac{\left(\frac{Feedrate}{Mixing rate}\right)}{Mixing rate} / Density$$

Conveying Volume =
$$\left(\frac{1 kg \ of \ product}{2.5 kg / kg \ of \ air}\right) / 1.2 = 0.3334 \ M^3/sec \ or 333,333,333.33mm^3/sec$$

$$2x \sqrt{\frac{volume}{(\pi.h)}} = diameter(d)$$

Working in millimeters, we now find that:

Diameter of the pipe for this load = 140.553mm

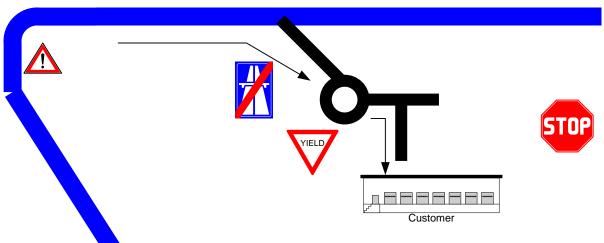
But – nobody makes 140.553 mm ID pipes = we would use a 140mm i/d pipe (and adjust the mixing rate accordingly).

USE A SPREADSHEET!

Feedrate	1	kg/sec	3,6	00	kg/hr
mixing rate	2.5	kg/kg air			
Velocity	22	m/sec			
Density	1.2	kg/m3			
Volume	0.3333333	m3/sec			
Volume in mm3	333333333	mm3/sec			
=SQRT((B8/(PI()*(B5*10000))))					
Radius	70.2765	mm			
Diameter	140.553	mm			

Given:

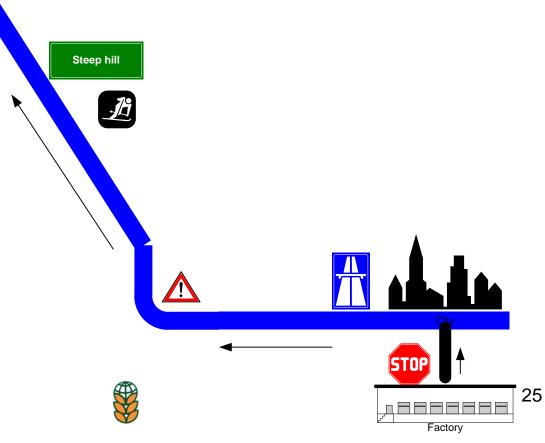
Feedrate, velocity and air density – you can easily work out the pipe diameter. Call the airport if you need to know the air density on any particular day. The density of air under standard conditions is 1.239 kg per cubic meter under standard conditions. (16 deg C at sea level)

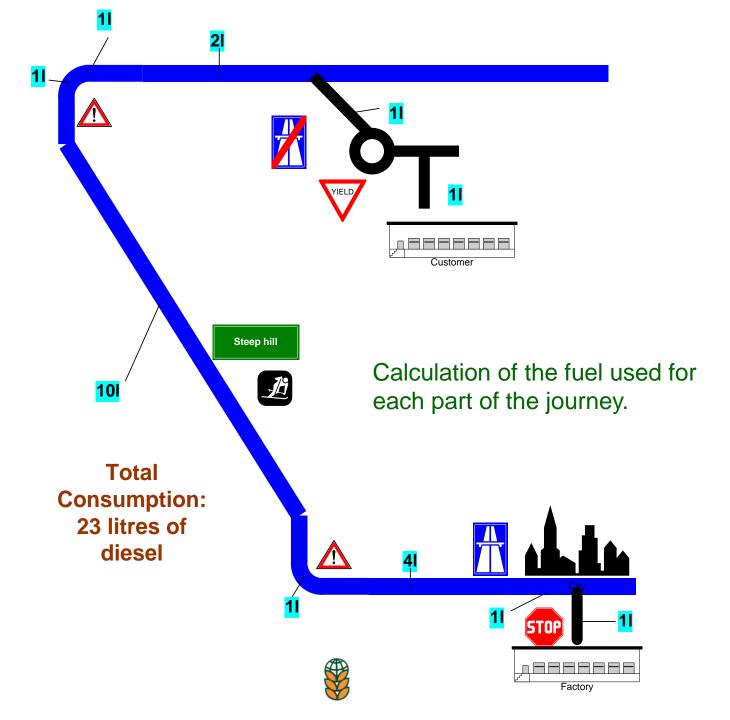


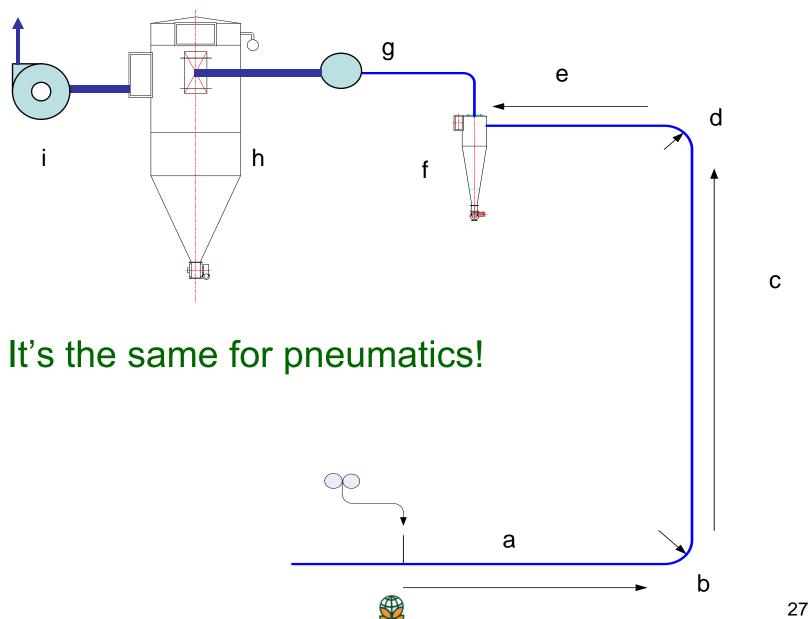
The energy budget:

Calculating the amount of fuel used by the truck is a function of;

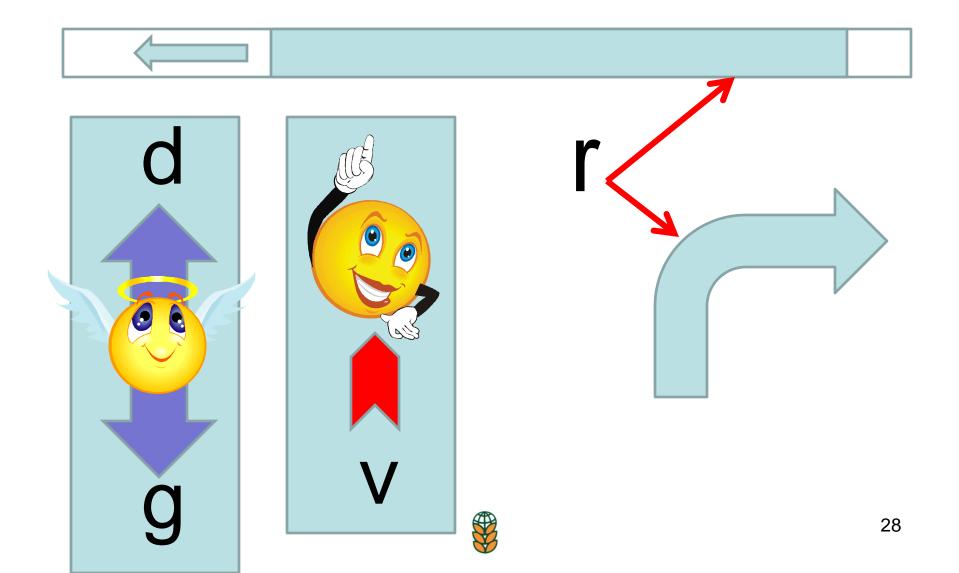
- Size of truck to carry the load
- Distance traveled
- Type of road
- Fuel consumption (hills, corners etc.)
- Part of the fuel is to move the truck, and part for the load.

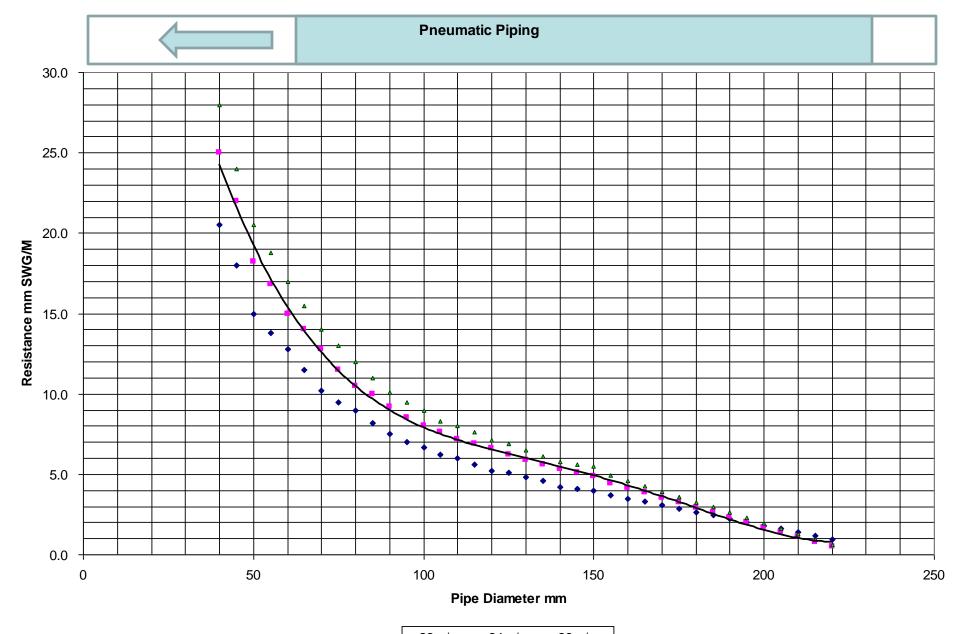

Km total = 10


Stops = 2


Corners = 2

Roundabouts = 1


Hill = 1


Elements of resistance

Energy to move the truck

Plant:	Blunder Milling			
Land:	Dakar, Séné	Dakar, Sénégal		
Plant Capacity:	250.00 Tonnes per 24 hours			
Grain:	Soft Wheat			
Altitude:	12	Metres A.M.S.L		
Max ambient temperature:	28	Degrees C		
Initial Mixing Rate :	2.5	Kg stock/Kg air		
System Velocity:	22.0	Metres / Second		
Conveying Density	1.171	Kg/M2 Calculated		
Resistance Column	3	CALC Calculated		

Line Number	Line	1	
From Purpose From	From	Purpose	
To Purpose To	То	Purpose	
Stock Qty. in kg/h	Stock Qty.	3,600	
Selected mixing rate stck:air	mixing rate	2.50	
Vertical Conveying Metres	Vertical	25.0	
Horizontal Conveying Metres	Horizontal	12.0	
No.of Bends V/Horiz	V/Horiz	1	
No.of Bends H/Vert	H/Vert	1	
No.of Bends H/H	H/H	1	
Calculated Air volume cbm/h	Air volume	1,229	
Calculated Pipe Diameter	Pipe diam	140.5533	
Resistance column		3	
Resistance mm/m	ResistanceM	4.2 m	nm/m
Metres	ConveyingM	42 m	n

Resist Mix Rate <= 2.5	lowmixrate	1.60	
Resist Mix Rate >2.5	himixrate	0.96	
Basic Air Pressure mm W.G.	Pbasic	320	
Accleration Resistance mm W.G	Paccel	71	
Horizontal Pipe resist mm W.G	Phoriz	48	
Vertical Pipe resist mm W.G	Pvert	246	IL±I
Bends (all) Pipe resist mm W.G	Pbends	101	
Conveying Pressure mm W.G.	Pconv	465	─
			_
Total Line Pressure mm W.G.	Ptot	785	<u> </u>
Manifold Loss mm W.G.	Pmanif	12.5	
Total Pressure mm W.G.	Ptot	797	
		_	
		_	
Seal Leakage cbm/hr	Vseal	123	
	Г		
Total Volume cbm/hr	Vtot	1352	
Total Volume cbm/min		22.530	
Total Volume cbm/sec		0.375	

Line Number	2	
From	B1a	
То	B1 Sift	
% of B1 Stock	25.0%	
Stock Qty. in kg/h	2,604.17	
Air volumecbm/h	749.89	Calc
CalculatedPipeDiameter	110.00	Calc
Selected mixing rate	2.96	
Vertical Conveying Metres	25.00	
Horizontal Conveying Metres	12.00	
No.ofBends V/Horiz	1.00	
No.ofBends H/Vert	1.00	
No.ofBends H/H		
Basic Air Pressure mm W.G.	393.20	Calc
Accleration Resistance mm W.G	83.96	Calc
HorizontalPipe resistmm W.G	46.81	Calc
Vertical Pipe resist mm W.G	291.28	Calc
Bends (all)Pipe resistmm W.G	71.75	Calc
Conveying Pressuremm W.G.	493.80	Calc
Total Line Pressuremm W.G.	887.00	Calc
Seal Leakage cbm/hr	74.99	Calc
Manifold Loss mm W.G.	13.00	Calc
TotalPressure mm W.G.	900.00	Calc
Total Volume cbm/hr	824.88	Calc

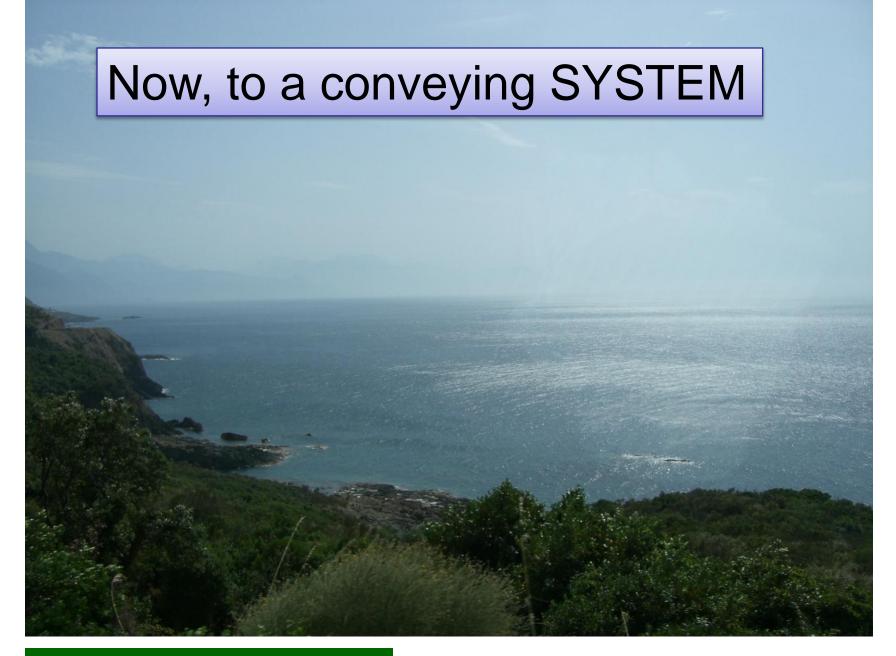
Energy budget for a single conveying line.

So you want the formulae?

- Basic Pressure: =(ResistanceM*ConveyingM)+(120*(VELOCITY/20)^2)
- Acceleration:=sel_mixing_rate*(9.83*(24-VELOCITY)*(22-VELOCITY)-17.33*(26-VELOCITY)*(22-VELOCITY)+3.54*(26-VELOCITY)*(24-VELOCITY))
- Horizontal Conveying:

 Horizontal*sel_mixing_rate*IF(sel_mixing_rate<=2.5,lowmixrate,highmixrate)
- Vertical Conveying: =Vertical*sel_mixing_rate*(4.2*(VELOCITY-24)*(VELOCITY-22)/(26-24)/(26-22)-4*(VELOCITY-26)*(VELOCITY-26)*(VELOCITY-24)/(22-26)/(22-24))
- **Bends**=sel_mixing_rate*20*(VELOCITY/20)^2*(2/3*(C13+C14)+1/3*C12)
- Seal leakage = Air_volume*10%

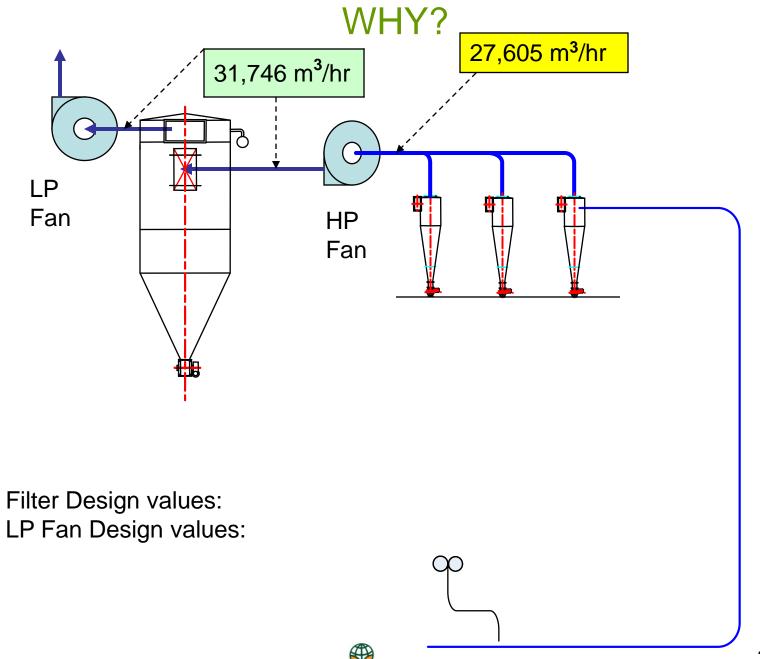
IF YOU WANT THE FORMULAE BEHIND THESE - READ THE BOOK!

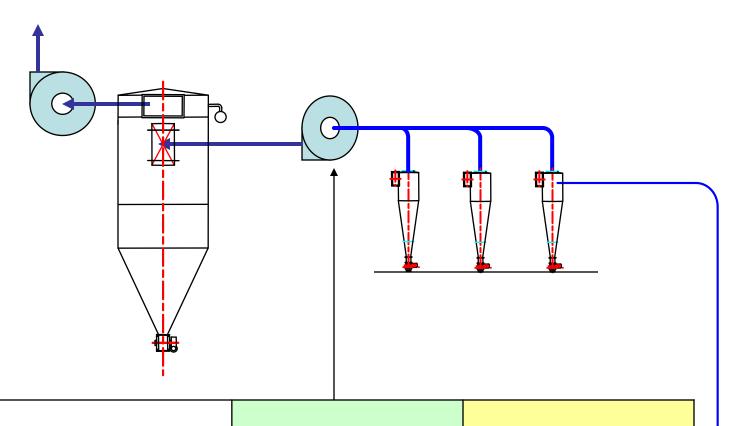


For this ONE conveying line:

- Total volume: $825 \text{ M}^3/\text{hr}$
- Total pressure: 900 mm swg
- Capacity: 2,600 kg/hr
- Lift Diameter: 110 mm Ø
- Cyclone Size: 360 mm Ø

NOW it gets a little tougher:



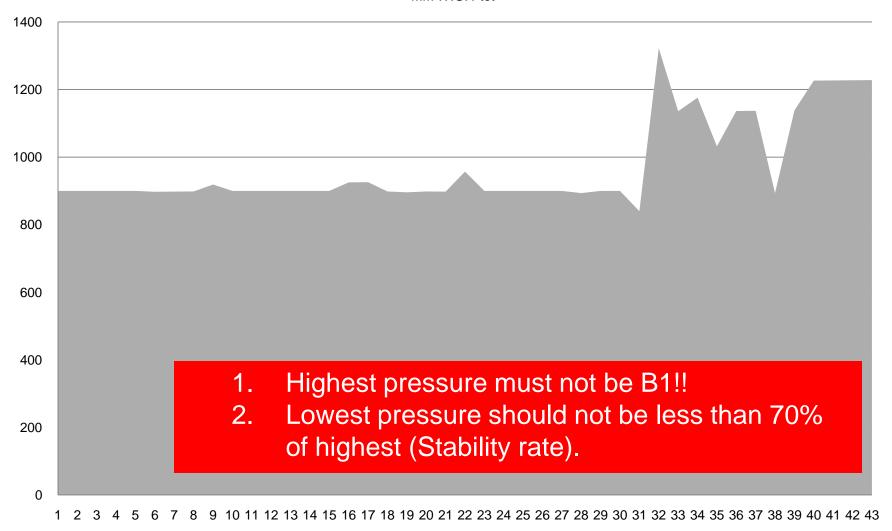


Fan Selection Data;	Blunder Milling		
Item	Pressure	Volume	
Conveying System	925 mm WG	24,004 cbm/hr	
Manifold to Filter	36 mm WG	-	
Filter Resistance	60 mm WG	-	
Manifold to Fan	35 mm WG	-	
Manifold from Fan	35 mm WG	-	
Jet Cap resistance	25 mm WG	-	
Totals	1,117 mm WG	24,004 cbm/hr	
Mixing and Imbalance %	<mark>15</mark> %		
Fan Design values	1,284 mm WG	27,605 cbm/hr	
	OK	460.076 cbm/min	
		7.668 cbm/sec	

Temperature	28 Degrees
Altitude	12 mamsl
Fan Inlet Pressure & Volume Density	1.171 Kg/CbM
Estimated Power consumption :-	164.09 Kw

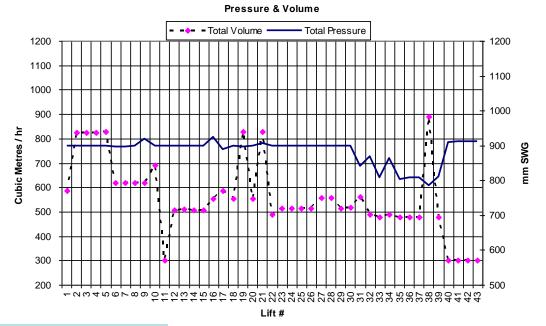
Filter Design values:

1,284 mm WG


27,605 m³/hr

mm W.G. Ptot

mm W.G. Ptot



STABILITY

Stability = pMin/pMax

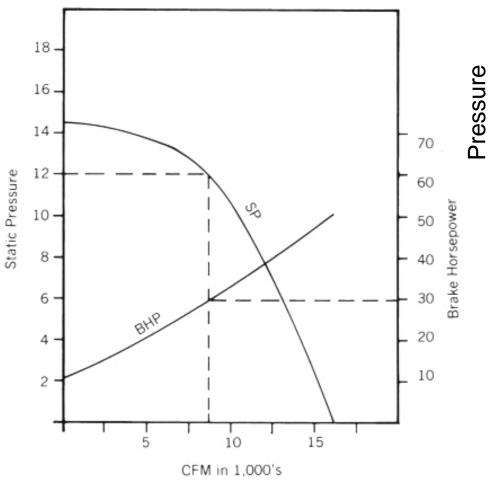
Systems should be >= 80%

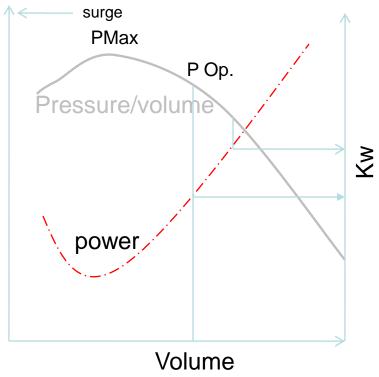
B1 MUST NOT BE pMax.

PMin in system 786 mm swg

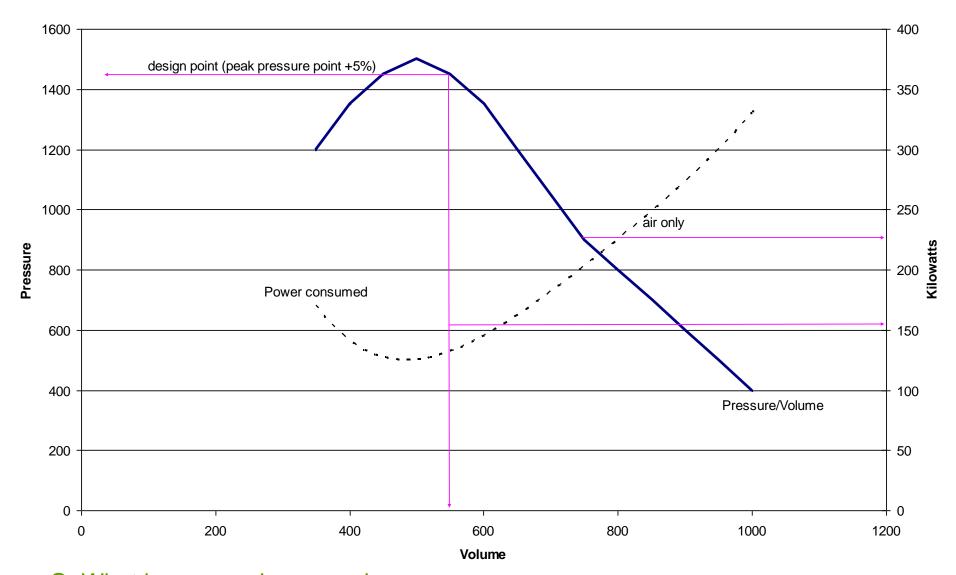
PMax in system 925 mm swg

Stability 85% percent


Lifts 43 count


Stable System

Understanding a fan curve.



More air = more power & less pressure.

Fan Curve

Q: What happens when you close the main air valve?

Fan Laws

- 1. Volume varies as RPM.
- 2. Static Pressure varies as square of RPM.
- 3. Power varies as cube of RPM

Double the rpm = square the pressure = cube the power.

What does this mean?

Item	Original	Revised	
Speed	2,500	2,900	RPM
Volume	23,000	26,880	Cu M / Hr
Pressure	1,200	1,614	mm swg
Power	212	330	Kw

Be very careful playing with the speed of your fan!

In summary

- Pneumatic conveying is quite simple pneumatic <u>systems</u> are NOT.
- This presentation is not designed to teach you how to design a system, but to understand how one works.
- PLEASE REFER TO YOUR EQUIPMENT
 SUPPLIERS FOR GUIDANCE!! they are the
 only ones who know everything about how
 YOUR system was designed.

