

Bread crumb: a bubble story investigated by X-ray tomography

P. Babin^{1,2}, R. Dendievel¹, G. Della Valle³, H. Chiron³, AL. Réguerre ³

¹ SIMAP, INP Grenoble, 38402 Saint Martin d'Hères ² Science Computers Consultants, 42100 St Etienne, ³ INRA BIA, 44316 Nantes Cedex France

18 th Annual IAOM
Middle East Africa
Conference
December 08-11, 2007 – Muscat - OMAN

Computers Consultants

GPM₂

Food

Agriculture

Environment

Bread crumb: a bubble story investigated by X-ray tomography

A better knowledge of the phenomena governing the **development and setting of crumb structure** in viscous medium requires an accurate mapping of the **cellular structure set up**.

X-ray tomography is a fast, 3D, non invasive technique which appears to be well suited to overcome difficulties encountered with more classical imaging techniques.

Wheat flour dough, which expands by a volumic factor of 3 during proofing and 1.3 during baking offers a good opportunity for such a study.

Investigating the link between physical properties and mouthfeel

Materials

Different doughs (food foams) of selected compositions (flour, water, yeast, sugar, oil) have been baked for close density values.

hours

ESRF: European Synchrotron Radiation Facility Grenoble, X Ray Tomography 3D

1) Proofing

3D Image analysis (granulometry & labelisation)

Gradual development of crumb porosity during proofing

Final crumb texture is highly dependant on yeast concentration, proofing conditions and heating set up.

Crumb motion picture

t < t₁ free bubble growth: measuring diameter

Constant strain rate

Evolution of wall thickness distribution

Wall
thickness
evolutions
and
connectivity
determine a
2nd critical
time t₂ of cell
structure
coarsening,
by
coalescence.

X Ray Tomography 3D (ESRF, BM05) 2) Baking

Operating Conditions

1 scan every 3 minutes - Baking: heating at 5℃/ mn

Further results on baking

Maximum expansion is reached $\approx 50^{\circ}$ C and setting occurs $\approx 75^{\circ}$ C, in agreement with main biopolymer state changes (dough to crumb transition).

With these conditions, during baking, cellular structure undergoes little changes at millimetric scale.

Conclusions

- X-ray tomography coupled with 3D image analysis provide quantitative information, by determining critical times for bubble growth and coalescence.
- New insights on the role of surface active components in texture of baked products can be suggested.
- Breadmaking is an amazing way to create such different crumb structures.

Perspectives:

Numerical computation of E* (FEM-3D)

3D- images can be used for validation of **numerical models** of foaming and mechanical properties towards the aided **design of cellular structures**.

Thank you for your attention

Please contact France Export Céréales (stand D2) for more details.

18 th Annual IAOM Middle East Africa Conference December 08-11, 2007 – Muscat - OMAN Food

Agriculture

Environment

