SOLVENT RETENTION CAPACITY (SRC) A new way to look into flour quality

Stéphane COCHET

« Final result is, at the minimum, the sum of efforts of the individual contributors »

Imagine a 3 runners relay Total Time Analysis

Team	Total Time
Winner	32 sec
Second	33 sec
Third	34 sec
Fourth	35 sec

TOTAL TIME is an indication of the TEAM PERFORMANCE It tells you HOW the team is performing but not WHY!

Imagine a 3 runners relay Individual Times Analysis

Team	Total Time	1st Runner	2 nd Runner	3rd Runner
Winner	32 sec	11 sec	11 sec	10 sec
Second	33 sec	11 sec	11 sec	11 sec
Third	34 sec	12 sec	12 sec	10 sec
Fourth	35 sec	9 sec	9 sec	17 sec

INDIVIDUAL RUNNER PERFOMANCE explains TEAM PERFORMANCE

You can only IMPROVE the <u>TEAM PERFORMANCE</u> by ACTING on the <u>INDIVIDUAL PERFORMANCE</u>

RHEOLOGICAL AND FINISHED PRODUCT LABORATORY TESTING METHODS TELL YOU HOW FLOUR WILL FUNCTION

SRC TELLS YOU

WHY

5 key Drivers for understanding SRC

« Quantity » does not mean « quality »

One might require a minimum « quantity » but this will never guarantee « quality » (think about bug infested wheat and protein content!)

2. « Quality » is defined by « Performance »

Performance means: does the flour give a 'good' dough and the dough a 'good' final product. The "good" being different for every one.

- 3. Flour performance depends mainly on flour 3 main polymers Gluten (Glutenins), starch (damaged), fibers (pentosans)
- 4. Rheological tools measure the combined effect of the 3 polymers We speak about polymer « functionality ».
- Measuring individual polymer functionality helps better understand dough performance.

It is like going from 2D image to 3D image.

Reminder on the wheat flour 3 main polymers actions: Protein Starch (Damaged) Pentosans

Impact on dough properties

	Proteins	Damaged Starch	Pentosans
Water intake	++	+++	++++
Stiffness	++	++	++
Extensibility	-/+	-	
Elasticity	++		
Gas retention	++	-	(Insoluble) + (Soluble)
Gas production	No effect	+++	
Volume	Depends	++ (if retention good)	+/-
Colour	-	++++	
Stickiness/viscosity		++ (Excess)	+/-
Breakage (biscuit)		++	++
Crispiness (final product)		-	-
Shelf Life (Bread)		+	+ (Insoluble)

How to measure polymer Functionnality?

Measuring polymer functionality? a sponge trick!

- Each flour polymer is able to specifically absorb a particular solvent:
 - Sodium Carbonate for Damaged starch
 - Sucrose for Pentosans
 - Lactic Acid for Glutenins
- The principle will be to make flour swell into these solvents.
- Like a sponge, the polymer will absorb its solvent.
- Then we will force the solvent out of the polymer.
- If the polymer has high functionality it will retains a bigger quantity of solvent
 - Like when you try to remove water for a sponge, there
 is always some water « linked » with the sponge.

SRC Manual procedure limits the diffusion of the method

There is a need for a significant improvement of the method and its results

SRC-CHOPIN: key features

- Weigh and scan the tubes with SRC balance
- Insert tubes and syringes according to the predefined test scheme on the screen

- Press start
- Addition of solvent, shaking, centrifugation and drainage are fully automated.
- Weighing and final results

Advantages vs manual method

- Gain in productivity
 - Analyze more samples in a day
 - Reduce operating time by 65%

- Simplicity
 - Prepare the samples, press "start"
 - The instrument does the rest

- Precision
 - Get comparable results from one lab to another

How much more accurate is it?

Coefficient of variation (%) (lower is better)

- SRC-CHOPIN is 3 times more accurate
- Ring test organized end of 2014; results available in 2015

What about the standards?

 Results from SRC-CHOPIN 100% complies with existing AACC 56-11.02 standard

 New AACC official method, including the improved results from SRC-CHOPIN, in 2015

Conclusion

- SRC test measures flour quality and functionality
- SRC is highly beneficial and complementary to quantitative and rheological analyses

 SRC-CHOPIN is the solution for running SRC test easily, efficiently and accurately!

