FUNCTIONS OF THE ENZYMES ON FLOUR QUALITY

Pinar ERDAL
Head of R&D of Mirpain Milling&Baking Ingredients Company
In most of the countries, the most staple food of the people is bread. Wheat (*Triticum aestivum* L. and other *triticum* species) is one of the types of grain traditionally associated with bread making. Wheat flour provides unique properties amongst cereal flours and is, therefore, the basis for the successful production of bread. Wheat flour is the major ingredient for producing products in baking and pastry industry.
Wheat flour quality particularly depends on three factors: the individual genetic disposition of wheat cultivar, the agricultural practices used during cultivation, and the environmental effects the plant was exposed to.

These external and internal factors have extreme impact on the individual components of wheat flour and, therefore, on its overall baking quality. These properties can be improved with additives and in this way fluctuating wheat quality can be compensated for.

Therefore, due to the variable technological quality of flour, the use of additives has become important to standardize the flour in terms of gluten strength, color and fermentability.
FLOUR QUALITY INDICATORS

MILL PERFORMANCE

- Intake requirements
 - Protein content & quality
 - Falling Number
 - Specific Weight
 - Endosperm formation

- Output requirements
 - Milling Yield
 - Colour
 - Starch Damage

BAKING PERFORMANCE

- Dough rheology
 - Extensibility
 - Elasticity
 - Mixing tolerance
 - Water absorption

- Baking performance
The overall aims of the miller are to produce:

- Consistent quality is a MUST

- A range of flours suitable for a variety of functions

- Flours with anticipated performance
As a sloppy view; flour quality is related to protein content, particle size distribution, amylase content and starch damage which are also important for final product quality.
Intended Use of Additives

- Ensuring Standardization
- Improving quality
- Enhance consumer acceptance
- Restore the deficiency
- Reducing cost
For correct use of additives:

1) Flour quality analysis should be done.
2) Results and desired criteria should be compared and correct diagnosis should be made.
3) Appropriate improver should be determined.
4) Finally, the result should be confirmed by baking trials.
The main components of flour and bread additives are enzymes.
What are enzymes?

• Enzymes are proteins with the unique capability of being able to act as catalyst in bio-chemical reactions.

• Catalyst is a substance that increases the rate of a chemical reaction without itself undergoing any permanent chemical change.

• They are vital for life and serve a wide range of important functions in the body, such as aiding in digestion and metabolism.
Enzymes have one or more active sites in their structure. These regions are specific for certain substrates. They catalyze the reaction to a specific product. This is called key-and-lock mechanism.
STABILIZATION AND IMPROVING THE QUALITY OF FLOUR WITH ENZYMES

The ingredients for flour improving especially ultra concentrated enzymes catalyze chemical reactions in the case of flour/dough. As they are ultra concentrated they are used at very low dosages (ppm) and yield big desired effects on the flour quality.
Some of the flour treatment enzymes used in effecting flour quality are; Amylases, Hemicellulases, Xylanases, Lipases, Glucose Oxidase, Protease… For years, enzymes such as malt and fungal a-amylases have been used in breadmaking. Due to the changes in baking industry and increasing demand for more natural products, enzymes have advanced real importance in breadmaking, where they improve dough and bread quality leading to improved dough flexibility, machinability, stability, loaf volume and crumb structure.
Each enzyme is specific for a certain substrate.
RHEOLOGY

One quick and economical way to determine the effects of enzymes is using flour rheology test equipments which are

Farinograph
Alveograph
Mixolab
Falling Number
ENZYMES VERSUS FLOUR RHEOLOGY

AMYLASE
Amylase has significant effects on the Rheofermentometer with improved gas production and dough height. Amylase have an effect on Falling Number (reducing the falling number) Increases L value on alveograph

Xylanase
Xylanase might has positive effects on Alveograph P/L ratio by increasing L.

LIPASE PHOSPHOLIPASE
Lipase and phospholipase, normally would not have significant rheological effects.

OXIDASE
Glucose Oxidase improves the Farinograph stability and reduces the Farinograph degree of softening.

PROTEASE
Protease has a strong, measurable effect on the Alveograph; the addition of a protease strongly reduces W values leaving P/L ratio almost unchanged
If you desire the accurated and proven result on effects of the enzymes, BAKING TESTS will tell you the TRUTH.
ALPHAMILL PF
ALPHA AMYLASE

• Gas production,
• improves volume, crust colour,
• retards staling

HEMMILL SPRING
XYLANASE

• Improves dough machinability,
• increases volume and oven spring

LIPOMILL(S)
LIPASE

• Improves volume and dough strength
• Preserves freshness

OXIMILL QP
GLUCOSE OXIDASE

• Strenghen flour,
• improves flour stability and dough machinability
• provides better knife opening

MIRPAIN XL
MALTGENIC AMYLASE

• Improves bread freshness
• reduces staling

PROMILL PROTEASE

• reduces flour strenght
• destroys gluten
EXPERIMENTS WITH THE ENZYMES ON VARIOUS FINISHED PRODUCTS
w/o HEMIMILL SPRING with 5 ppm HEMIMILL SPRING
SOME RESULTS

w/o LIPOMILL (S) with 3 ppm LIPOMILL (S)
TEST BAKING WITH MIRPAIN ENZYME BLENDS
TEST BAKING WITH MIRPAIN ENZYME BLENDS

untreated Alphamill PF Alphamill PF Hemimill XYE Hemimill XYE
Hemimill SPRING

Miriin
"Milling & Baking Ingredients"
MIRPAIN’S TAILOR MADE ENZYMATIC FLAT BREAD SOLUTIONS

Most common problems of flat bread:
• Springing back or shrinkage of the dough
• Falling off the wall of the oven during baking
• Drying too quickly, not enough browning
• Poor dough stability
• Poor sheeting quality
• Breaking of the loaves during shelf-life
Criteria evaluated in sensory analysis of Flat Bread

- Layers Separation
- Foldability
- Chewiness
- Homogenity of Color
- Biting Quality
- Freshness
- Shape
When are enzymes used in pasta production?

Nowadays pasta is made from unconventional commodities in many countries of the World due to the high price of durum wheat.

Sufficient processing and balanced formulations are required to eliminate unconventional commodities poor technological properties.
Economically speaking, the use of soft wheat flour for pasta production could be advantageous; however, the poor sensory attributes and cooking quality of such products have dictated that durum semolina be used. Attempts to overcome the poor quality of non-conventional pasta have primarily relied on the use of additives.

It has been reported that firmness, color intensity and cooking quality have been improved with the appropriate drying program and additives.
What is the difference between Normal wheat and Durum wheat structurally?

Durum wheat has very high protein content relative to normal wheat. A dough made with durum wheat has high extensibility, so it can be stretched out into long pieces of pasta without breaking, but low elasticity, which means that it doesn't bounce back like a normal wheat dough when kneaded.
Pasta Quality Parameters

- Stickiness
- Firmness
- Elasticity
- Brightness
- Cooking tolerance
- Bite quality
- Color
Benefits of Pasta Improvers use:

- Reduces cooking losses & stickiness
- Improves cooking tolerance
- Advances bite quality
- Improves elasticity and chew ability
- Enhances color and brightness
- Eliminates the cracking problem
- Increase surface firmness
For your milling and baking solutions
Stay tuned with MIRPAIN!
THANK YOU FOR LISTENING!